

The SuperCDMS dark matter experiment

October 21, 2018

John L. Orrell Research Scientist

PNNL is operated by Battelle for the U.S. Department of Energy

SuperCDMS SNOLAB

- Design
- Detectors
- Sensitivity
- Backgrounds
 - Overview
 - Tritium from cosmic rays
 - Cu surfaces & bulk ²¹⁰Pb
 - Kapton & cirlex
- R&D detectors
 - HVeV
- Summary

SuperCDMS Collaboration \mathbb{X} California Inst. of Tech. **CNRS-LPN* Durham University FNAL** Pacific Northwest ATIONAL ABORATORY Queen's UniversitySanta Clara University Northwestern PNNL ЯM SNOLAB SMU **SNOLAB** Stanford University Texas A&M University U. California, Berkeley U. Colorado Denver **U. Evansville** ত্য SOUTH DAKOTA U. South Dakota U. Montréal U. Minnesota

Associate members

Experimental design, located at SNOLAB

Detector Tower

Ge & Si solid-state cryogenic detectors

- High Voltage (HV) Phonon-only measurement of ionization charge
 - Luke Phonons ΔV **Recoil Phonons**

-2

Sensitivity reach of SuperCDMS SNOLAB

• Direct detection search for spin-independent dark matter interactions

Backgrounds overview

• Anticipated: Tritium, ³²Si (only in Si), surface Rn daughters, material impurities

Spectra shown before detector resolution and application of single-scatter, fiducial volume, and nuclear recoil cuts

6

Tritium from cosmic ray spallation

- Exposure of Ge & Si crystals to secondary cosmic rays (e.g., n, p, μ) causes nuclear spallation producing a variety of long-lived, unstable nuclei
 - Tritium (³H) is especially problematic: $t_{\frac{1}{2}} = 12.3$ yr, pure β -decay, $E_{\beta}^{End} = 18.6$ keV

Tritium from cosmic ray spallation

- SuperCDMS SNOLAB Goal: Less than 60 days sea level equivalent exposure
 - One of four towers is composed of iZIPs with longer surface exposure
 - Currently crystals have < 8 days sea level equivalent shipped from Europe to SLAC</p>

Thank you **MAJORANA & GERDA!**

Shielded shipping container critical to meet exposure goal

DOI: 10.2172/1424835

SuperCDMS Underground

Cost and Feasibility Report

mond Bunker John Orrell²

Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA Pacific Northwest National Laboratory, Richland, Washington 99352, US

rresponding Author: Raymond Bunker@pnn

ENERGY Prepared for the U.S. Department of Energy under Contract DEAC05-768101830

Available on www.OSTI.gov

Surface backgrounds (Rn daughters)

• Radon daughters (long-lived ²¹⁰Pb) are potential surface background sources

Demonstration of

Cu surface background at detector sidewall

Tested on McMaster and Aurubis copper

Cleanliness tested with XIA Ultra-Lo1800 alpha counter by measuring polonium (²¹⁰Po), not lead (²¹⁰Pb) !!!

Dark Matter Mass [GeV/ c^2]

Cu surface background evaluation

- One year's worth of XIA Ultra-Lo1800 measurements on cleaned Cu surfaces
 - Shows unsupported ²¹⁰Po on Cu surface
 - Electroformed Cu doesn't show effect
 - Suggests ²¹⁰Pb in bulk of Cu
- XMASS measured ²¹⁰Po in bulk Cu
 - Inferring 17-40 mBq of ²¹⁰Pb per kg Cu
 - K. Abe et al., NIM A 884 (2018) 157-161
- In summary:
 - Cu surfaces are clean for SuperCDMS
 - Bulk ²¹⁰Pb in Cu is out of ²³⁸U equilibrium
 - Pursuing bulk measurements for publication

Kapton & CIRLEX trace radio-impurities

Acceptable,

but a target for

materials R&D

- SuperCDMS uses Kapton & cirlex in electrical readout from detector towers
 - Anticipated 17% of Ge HV background of SuperCDMS SNOLAB experiment
 - Of this 17%... 81% is from equally Th and ⁴⁰K
- Kapton:
 - DuPont polyimide film
- CIRLEX
 - FRALOCK product
 - Adhesively layered Kapton
- SuperCDMS flex cable stack-up: 4-LAYERS

Detector Tower

R&D detectors

- New developments using the athermal phonon sensor technology
 - R.K. Romani et al., Appl. Phys. Lett. 112 (2018) 043501

dark photon kinetic mixing

14

R&D detectors

Suggests new reach for SuperCDMS

Summary

- SuperCDMS searching for direct detection of low mass dark matter
 - Projected reach $\sigma \sim 10^{-43}$ cm² at 1 GeV/c² dark matter mass
 - Under construction now
 - Operation at SNOLAB in 2020
- Anticipated backgrounds: Tritium, ³²Si, Rn daughters, material impurities
 - Developments during construction show paths to further reduction in the future
 - Highlighted background sources are of relevance to neutrinoless double beta decay
- Future detectors expected to probe yet lower mass dark matter candidates
 - Anticipate further R&D detector development in parallel with SuperCDMS construction
 - Developments will likely also improve sensitivity to 1-5 GeV/c² dark matter candidates

Thank you

