Aaron Manalaysay UCDAVIS UNIVERSITY OF CALIFORNIA

for the LZ collaboration

DBD18

International Workshop on Double Beta Decay and Underground Science Hilton Waikoloa Village, Hawaii, USA 21-23 October, 2018

LUX-ZEPLIN

A direct-detection search, looking primarily (but not only) for WIMP dark matter with a xenon nucleus

LZ collaboration, June 2018

36 institutions 250 scientists, engineers, and technicians

- 1) IBS Center for Underground Physics (South Korea)
- 2) LIP Coimbra (Portugal)
- 3) MEPhI (Russia)
- 4) Imperial College London (UK)
- 5) STFC Rutherford Appleton Lab (UK)
- 6) University College London (UK)
- 7) University of Bristol (UK)
- 8) University of Edinburgh (UK)
- 9) University of Liverpool (UK)
- 10) University of Oxford (UK)
- 11) University of Sheffield (UK)
- 12) Black Hill State University (US)
- 13) Brookhaven National Lab (US)
- 14) Brown University (US)
- 15) Fermi National Accelerator Lab (US)

- 16) Lawrence Berkeley National Lab (US)
- 17) Lawrence Livermore National Lab (US)
- 18) Northwestern University (US)
- 19) Pennsylvania State University (US)
- 20) SLAC National Accelerator Lab (US)
- 21) South Dakota School of Mines and Technology (US)
- 22) South Dakota Science and Technology Authority (US)
- 23) Texas A&M University (US)
- 24) University at Albany (US)
- 25) University of Alabama (US)
- 26) University of California, Berkeley (US)
- 27) University of California, Davis (US)
- 28) University of California, Santa Barbara (US)
- 29) University of Maryland (US)
- 30) University of Massachusetts (US)

- 31) University of Michigan (US)
- 32) University of Rochester (US)
- 33) University of South Dakota (US)
- 34) University of Wisconsin Madison (US)
- 35) Washington University in St. Louis (US)
- 36) Yale University (US)

Why use liquid xenon?

A. Manalaysay UCDAVIS

4

Why use liquid xenon?

Large signal

- Scalar WIMP-nucleus interactions feature an A² dependence on the scattering rate. Xe has a large A.
- Natural xenon contains ~50% odd isotopes, giving high sensitivity to spin-coupled interactions

Why use liquid xenon?

Low background

- 1. Easily scalable to large size
 - 2. 3-D localization of events
- 3. 1 and 2 permit an ultra-lowbackground inner region to be defined.

* "DRU" = evt/kg/day/keV A. Manalaysay UCDAVIS

Moore's Law

Dark Matter Searches: Past, Present & Future

Dark Matter Searches: Past, Present & Future

Courtesy R. Gaitskell

Dual-phase time projection chamber (TPC)

- Main target is liquid xenon (180 K).
- Primary scintillation light (S1) emitted from interaction vertex
- Ionized e⁻ drift to the liq. surface; produce prop. light as they travel through gas (S2).
- •S1 and S2 permit:
 - Energy reconstruction
 - 3-D position reconstruction
 - Background rejection

Details in our Technical Design Report: arXiv/1703.09144

WIMPs: expected signal

- Majority of BG is from electronic recoils (ER).
- WIMPs detected via nuclear recoils (NR).
- ER and NR have different S1/ S2 ratio.

- Shape of observed spectrum gives info on WIMP mass.
- Low mass sensitivity affected by NR from ⁸B solar neutrinos (~7 events in 1000d, depends strongly on low-en. NR efficiency).

Sanford Underground Research Facility

- •LZ: factor of ~50 larger fiducial than LUX
- Lower backgrounds

LUX (inner can)

(See talk by Shaw Sally)

LZ

(inner can)

Outer cryostat vessel

UV reflectors in the inner cryostat vessel

Photomultiplier Tubes

Hamamatsu

R5912

8 inch

Photomultiplier Tubes

Hamamatsu

R11410 R8520 C inch C inch C inch

Main TPC

Completed lower PMT array

TPC

Outer detector

- Gd-doped LAB liquid scintillator.
- •Neutron and gamma veto.
- • 4π coverage
- Cutouts for cryogenics, electronics, neutron tubes, HV
- Screener vessel already deployed in LUX water shield, good results.

Outer detector

Backgrounds

ROI + Single scatter

No vetoes

A. Manalaysay UCDAVIS

With vetoes (LXe skin and liquid scint.)

Scientific Reach — Standard WIMPs

Min. SI sensitivity vs. live-time

- Reach LUX sensitivity within ~4-5 days
- Reach XENON1T (2018) sensitivity within ~2 weeks
- Min. sensitivity 1.6×10⁻⁴⁸ cm² after 1000 live-days

Scientific Reach — Standard WIMPs

Proj. [SI] sensitivity vs. WIMP mass

- With LZ, we begin to probe a significant region of param. space favored in pMSSM
- Sensitivity not yet limited by CNNS irreducible BG
- But expect to see many CNNS events from ⁸B, and potentially 1 event from atm+DSNB.

Scientific Reach — Standard WIMPs

Discovery potential

- Setting limits is great, but
- Really we are doing this to make a detection.
- Projected detection potential reaches (at min)
 - \rightarrow 3.8×10⁻⁴⁸ cm² at 3 σ
 - 6.7×10-48 cm² at 5σ

Scientific Reach — Axions and ALPs

Dark-matter ALPs Solar axions **10**⁻¹⁰ 10⁻⁹ Solar y Si(Li) **CoGeNT EDELWEISS** 10⁻¹¹ DFSZ **CDMS XMASS** Solar v 10⁻¹² **EDELWEISS XENON100** MJD' g_{Ae} ച്^{ഴ്} 10⁻¹¹ **XENON100** UX 2013 LUX 2013 10⁻¹³ LZ sensitivity **10**⁻¹⁴ KSVZ LZ sensitivity **Red giant 10**⁻¹⁵ 10⁻¹³ 10⁻³ 10⁻⁵ 10⁻² 10⁻⁴ 10^{-1} 10 m_A [keV/c²] m_{A} [keV/c²]

A. Manalaysay UCDAVIS

22

Neutrinoless double beta decay

- ¹³⁶Xe Q value at 2458 keV
- •We project 1% energy resolution at Q value.
- Main BG from PMTs+Cryostat
- Dedicated fiducial volume: 957 kg (BG optimized)
- •1000 live-day run
- Median 90% CL sensitivity on ¹³⁶Xe 0νββ half-life:
 - $T_{1/2}^{0\nu} > 0.74 \times 10^{26}$ years (median)

Summary

- Noble-liquid TPCs leading the field in sensitivity to WIMP
- •LZ is the successor to ZEPLIN and LUX. 7 tonnes LXe (5.6 tonnes fiducial)
- •LZ will reach sensitivity of 1.6×10⁻⁴⁸ cm² for SI WIMP-nucleon interactions. Other dark-matter results expected as well.
- •Sensitivity to $0\nu\beta\beta$ of ¹³⁶Xe of 0.74×10²⁶ years
- •LZ is at an advanced stage. Construction already begun, planning first science data in 2020.