XENONNT:

THE NEXT STEP IN XENON DARK MATTER SEARCH

SHINGO KAZAMA NAGOYA UNIVERSITY

DBD18@HAWAII, OCTOBER 222018
xenon1t.org

THE XENON PROGRAM

- LXe target: excellent for DM WIMPs scattering
- Detector: two-phase LXeTPC: 3D position sensitive calorimeter.
- Background discrimination:
- simultaneous light (S1) \& charge (S2) detection
- single site interactions, fiducialization, and self shielding
- High light yield (S1) + proportional scintillation (S2)
- low energy threshold for nuclear recoils ($\sim 5 \mathrm{keV}$, lower for ionization only)

XENON10
Total Xe: 25 kg Target: 14 kg
Fiducial: 5.4 kg
Limit: ~10-43

XENON100
Total Xe: 162 kg
Target: 62 kg
Fiducial: $34 / 48 \mathrm{~kg}$
Limit: ~10-45

XENON1T Total Xe: 3.2 ton Target: 2 ton Fiducial: 1 ton Limit: ~10-47

XENONnT
Total Xe: ~8.4ton
Target: 5.9ton
Fiducial: ~ 4 ton
Limit: ~10-48

DARWIN
Total Xe: 50 ton Target: 40 ton Fiducial: 30 ton Limit: ~10-49

DETECTOR MASS AND BACKGROUNDS

XENONnT

Fiducial mass [kg]
XENONIT
PandaX
XENON100
34

| 5.3 | 0.8 |
| :--- | :--- | :--- |
| | |

Low-energy ER background [events/(keV ton day)]

Minimal Upgrade
The XENON1T
infrastructure and sub-systems were originally designed to accommodate a larger LXe TPC.

Fiducial Xe Target
XENONnT TPC:
total Xe mass $=\sim 8.4 \mathrm{t}$ target mass $=5.9 \mathrm{t}$
fiducial mass $=\sim 4 \mathrm{t}$

Total \# of PMTs $\times 2$:
494 PMTs
(253 top, 241 bottom)

Background

Record low-back levels in XENON1T dominated by 222Rn-daughters.

Identified strategies to effectively reduce ${ }^{222} \mathrm{Rn}$ by ~ a factor of 10.

Fast Turnaround

Use XENON1T subsystems, already tested

Fast pace:
Installation starts in 2018 commissioning in 2019 Summer

WATER TANK, SUPPORT STRUCTURES, EXPERIMENT BUILDING

- Reuse large investment in money and time for design, safety review, approval by authorities, construction + commissioning

SYSTEMS REUSED: WATER CHERENKOV MUON DETECTOR

- Passive shield against external radioactivity
- 700 t of continuously purified water
- tank clad with high-refectivity polymer foil
- instrumented with 84 high-QE 8" PMTs (R5912) to tag muon-induced background
- Trigger efficiency for muons (MC): > 99.5\% JINST 9 P1 1006 (2014)

SYSTEMS REUSED: CRYOGENICS

	XENON1T	XENONnT Getter+Cryo
Total heat load	150 W	$\sim 275 \mathrm{~W}$
Vessel (static)	$\sim 20 \mathrm{~W}$	$\sim 40 \mathrm{~W}$
GXe/LXe purification	$\sim 40 \mathrm{~W} @ 55 \mathrm{SLPM}$	$\sim 70 \mathrm{~W} @ 100 \mathrm{SLPM}$
Cryogenic LXe purification	NA	$\sim 70 \mathrm{~W} @ 5000 \mathrm{SLPM}$
Heat pipe loss (dynamic)	$\sim 85 \mathrm{~W}$	$\sim 85 \mathrm{~W}$
PMT arrays	5 W	$\lesssim 10 \mathrm{~W}$

XENON1T:

- 2 Pulse Tube Refrigerators (cooling power 240W), one in use, one as backup for maintenance
- 1 LN cold head (cooling power >300W) as emergency cooler
- Total heat load $=150 \mathrm{~W}$

XENONnT:

- Use the same cryogenic system: Expected total heat load: 275W
- Operated with a single PTR (~150W) + continuous cooling with LN2 cold heat
- Tested the stability of combined PTR/ LN2 cooling in XENON1T last May

XENON RECOVERY AND STORAGE

ReUse XENON1T ReStoX

- Vacuum-insulated storage system with capacity of 7.6 t of Xe (gaseous, liquid or solid)
- LN2 based cooling system (35 kg / d)
- Fast recovery in case of accident/ maintenance ($\sim 50 \mathrm{~kg} / \mathrm{h}$)
- Maximum pressure: 73 bar
- Fully controlled by SCS

Additional ReStoX2

- Foam-insulated storage system with capacity of 10 t of Xe (gaseous, liquid or solid)
- Very fast recovery with Xe freezing (1t / hour)
, Maximum pressure: 71.5 bar
- LN2 consumption for recovery: ~ 8000 kg
- Construction completed
- Already delivered to LNGS, commissioning and tests are ongoing!

SYSTEMS SCALED UP: ELECTRONICS, DAQ, COMPUTING, SLOW CONTROL

Electronics / DAQ:

- Scale-up of DAQ frontend \& trigger: \rightarrow only minor modifications required
- further parallelization to read out more than double number of channels
- expand online waveform analysis to reduce data amount
- New custom-made PMT amplifiers allow for a (low gain) second readout of the bottom PMT array for $0 \nu \beta \beta$ of 136Xe
- all hardware in place, ordered or under construction (amps)

Computing:

- Same computing/processing framework as XENONIT https://github.com/XENON1T
- Scalable: based on OSG/EGI resources and LHC-developed data management
- Improvements in structures and procedures
- Extra storage under procurement

Slow Control:

- Same GE/SCADA -based framework as extensively tested with XENON1T
- Extend to new systems (RESTOX2, LXePUR, Neutron Veto, etc.)

SYSTEMS REUSED: KR DISTLLLATION COLUMN

XENONTT

- Commercial Xe: 1 ppm - 10 ppb natKr,
- ${ }^{85} \mathrm{Kr}$ is unstable $\left(\mathrm{T}_{1 / 2}=10.8 \mathrm{y}, \mathrm{Q}\right.$-value $\left.=687 \mathrm{keV}\right)$
- Solution: 5.5 m cryogenic distillation column
- Utilizes different vapor pressure:
- Kr: 20900 mbar@178K, Xe: 2010 mbar@178K
- Feeding flow rate: 8.3 SLPM (3kg/h)

Thermodynamically stable up to 18 SLPM ($6.5 \mathrm{~kg} / \mathrm{h}$)

- Measured separation: $6.4 \times 10^{5} @ 8.3$ SLPM, < 48 ppq (RGMS)

SYSTEMS REUSED: KR DISTILLATION COLUMN

XENONnT

higher Kr lower T
p use the same column

- pre-distilled 8 t of gas. Distillation campaign will start at Jan. 2019
- will start run with ~ 0.2ppt (XENON1T: 0.66ppt)
- improve only by a factor 10 (small!), down to 20 ppq.
- Column has been shown to reach natKr/Xe < 26 ppq (90\% CL)

222RN BACKGROUND IN XENON1T

Type I sources

- Emanation of Rn inside the TPC + Cryostat: ~19\% (1)
- can only be diluted by fast recirculation with pass through Rn removal system

Type II sources

- Emanation of Rn outside the TPC
- can be fully removed by extraction of GXe and pass through efficient Rn removal system
(2) Cryopipe (LXe transfer line)
(3) QDrive pump
(4) Hot getter
(5) Pipes + Cables
- Total Type I+II: $\sim 10 \mu \mathrm{~Bq} / \mathrm{kg}$

222RN BACKGROUND IN XENONNT

Type I sources

- Emanation of Rn inside the TPC \& inner cryostat: ~19\% (1)
- Dilution factor: Rn lifetime (5.5 d) / recirculation time
- Factor 2 reduction requires flow of 170 slpm in 5.5 d ($=8 \mathrm{t} / 5.5 \mathrm{~d}=60 \mathrm{~kg} / \mathrm{h}=170$ SLPM)

Type II sources

- Emanation of Rn outside the TPC
- can be fully removed by extraction of GXe and pass through efficient Rn removal system (See details later)
(2) Cryopipe (LXe transfer line)
(3) QDrive pump \longleftarrow Can be removed by pump exchange
(4) Hot getter
(5) Pipes + Cables
- Total Type I+II:~1 $\mu \mathrm{Bq} / \mathrm{kg}$

Plus: aiming at additional reduction of Rn background by material screening / selection and surface treatments.

UPGRADE: GASEOUS XE PURIFICATION

Goals

- Increase mass flow to 120 slpm ($12 \mathrm{~g} / \mathrm{s}$) to
- improve electron lifetime
- reduce Rn background from type I sources with Rn removal column

Improvements

- Replace QDrive by new magnetic piston pump
- Enlarge tube diameter
- Use higher flow getter filters
- Tested on 1T:
- Flow: 75 slpm (54 slpm with 3 Q-drive)
- Inlet pressure: 1.6 bar, compression: 1.5 bar
- Could remove type II Rn source from QDrive circulation pump
- nT: Increase flow to 120 slpm with pre-charging of magnetic piston pump using QDrive

QDrive

Magnetic Piston Pump

UPGRADE: GASEOUS XE PURIFICATION

Electron lifetime

${ }^{222} \mathrm{Rn}$ concentration

- Now electron lifetime reaches ~ 1 ms
- Magnetically-coupled piston pump reduces 45% of Radon BG w.r.t SR1

NEW SYSTEM: TPC

- TPC size maximized to fit XENON1T outer cryostat
- same holding structure and leveling mechanism as 1T TPC
- technical design and FEM largely completed \rightarrow mockup components being tested (electrodes, TPC structure, PMT support, ...)
- optimized for low material budget (PTFE thickness minimized) and reduction of wall charge-up.
- Design drift field strength reduced to more moderate values, requiring only 30 kV on cathode
- All TPC electrodes made from single wires

Target Mass	5.9 t (cold)
\# of PMTs in top	253
\# of PMTs in bottom	241
Design drift field	$200 \mathrm{~V} / \mathrm{cm}$
Design extraction field	$8 \mathrm{kV} / \mathrm{cm}$

NEW SYSTEM: PMT ARRAYS

PMT(R11410-21):

LXe test facilities

- Each array contains 253 PMTs (top) and 241 (bottom), ~90\% of XENON1T PMTs reused
- Initial problems of some 1T PMT production batches (vacuum leak) now under control
- All PMTs are under test in LXe facilities.

PMT Arrays:

- accommodate a thermal shrinkage of $\sim 1 \mathrm{~cm}$ at the edges
 of the array;
- allow maximum photo-cathodic area; minimize the PTFE wrt XENON1T design;
, not exert direct force on PMT quartz-cover sealing;
- ensure flatness of the PMT arrays (below 0.7 mm deflection) under any circumstances (both during assembly and with the strong buoyancy from LXe)
- Design successfully tested with a slice mockup
- Behaved as expected through full thermal cycle down to -95C.

NEW SYSTEM: LIQUID XENON PURIFICATION

- Planned recirculation flow
- >5 L/min (LXe) (> 2500 slpm GXe)
- Capability to reduce $\mathrm{O}_{2}<1 \mathrm{ppb}$
- 2 redundant commercially-available cryogenic liquid pumps (Barber- Nichols)
- Two custom-developed, regenerable, cryogenic filters $\left(2 \mathrm{Cu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}\right)$
- Installed inside independent vacuum-insulated enclosures for maintenance
- Capability to rapidly measure electron lifetime (tens of seconds) with purity monitor
- Optimization of filter material and measurements of LXe purity ongoing
- Installation will start at 2019 Feb

Purity monitor

Alumina pellets with Cu

NEW SYSTEM: ONLINE RADON REMOVAL COLUMN

- Cryogenic distillation: remove ${ }^{222} \mathrm{Rn}$ from Xe "offgas" (fed to TPC) and store in liquefier Rn-enriched Xe.
- most Rn emanated from the gas system and pipes (type II sources) can be stored away long enough for it to decay (5.5 d lifetime).
- Need enrichment factor of at least ~100 not to remove too much Xe from the TPC.
- Tested Kr-column in reverse mode with XENON100 and XENON1T (3 slpm, not optimized):
- Rn concentration@XENON1T ~ $4 \mu \mathrm{~Bq} / \mathrm{kg}$
- Reduction by 65 \% w.r.t SR1 (factor 2.7) together with magnetic piston pump
- Built optimized Rn column for high throughput (> 200 slpm).
- Upgradable to 400 - 600 slpm (for type I Rn dilution of factors 3-4).

New Magnetic Piston Pump

NEW SYSTEM: NEUTRON VETO

- NR becomes dominant background once Rn is removed as planned:
- Raw materials under procurement and screening ongoing
- PRELIMINARY estimate:
- 1.8 ± 0.4 NR events / yr in [4-50] keVr in 4 t FV without neutron veto, dominated by PTFE

Active neutron veto

- For best DM discovery potential, aim at neutron tagging efficiency > 80\%
- Helps modeling neutron background
- Check efficiency with neutron generator/ ${ }^{241} \mathrm{AmBe}$

NEW SYSTEM: NEUTRON VETO

We have investigated different options:

- Gd loaded LS (STEREO, DC, Daya-Bay, ...)
- Gd Loaded plastic scintillator
- Gd loaded water (EGADS, SuperK-Gd,...)

Feasible, mature, safe, affordable, schedule,

We chose Gd loaded water!

Cherenkov light from Compton electrons of gammarays $(8 \mathrm{MeV})$ cascade from n-Capture

NEW SYSTEM: NEUTRON VETO

- Established technology @ EGADS (= Test facility for SK-Gd)
- Veto efficiency comparable to the LS-Gd ($\sim 80 \%$) achievable with highly reflective reflector (Tyvek/Gore-Tex)
- All Gd relevant components are external to tank
- XENONnT will start with pure water
- check TPC performance, cryostat leakage, ...
- does not delay the overall XENONnT schedule
- minimal obstruction for calibration sources
- no gap in azimuthal coverage of the n-veto

XENONnT schedule:

- Construction already started in 2018
- XENON1T still running well with improved background
- keep operational throughout 2018 for science data and testing
- Rn concentration@XENON1T of $\sim 4 \mu \mathrm{~Bq} / \mathrm{kg}$ has been achieved
- Achieved energy resolution of $\sim 1 \%(\sigma)$ at Qvalue of $0 \nu \beta \beta$ of 136Xe
- Will test ${ }^{37} \mathrm{Ar}$ source for low-energy ER calibration
- Commissioning of XENONnT will start at 2019 Summer

