DARKSIDE-50 RESULTS AND DARKSIDE-20K PROSPECTS

Jelena Maricic, University of Hawaii for DarkSide Collaboration October 22, 2018

DARKSIDE-20K IS INTERNATIONAL COLLABORATION WITH ~300 COLLABORATORS

OUTLINE

Introduction

- DarkSide-50 design for <u>background free</u> WIMP search
- Recent results
- DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon, arXiv:1802.07198v2 (accepted for publication in Phys. Rev. D)
- Low-mass Dark Matter Search with DarkSide-50 Experiment, Phys. Rev. Lett. 121, 081307 (2018) Editor's suggestion
- Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment, *Physical Review Letters 121, 111303, (2018)*
- The developments toward DarkSide-20k and GADMC
- Summary and Outlook

DUAL PHASE ARGON TIME PROJECTION CHAMBER CONCEPT

PULSE SHAPE DISCRIMINATION (PSD) IN LIQUID ARGON

 $\tau = 7$ ns (singlet) $\tau = 1500$ ns (triplet)

PSD parameter, F90 *Fraction of total light detected in the first 90 ns of the pulse.*

> 10⁷ bkg rejection of electron recoils based on S1 PSD.

INTRINSIC BACKGROUND ³⁹Ar MITIGATED IN UNDERGROUND ARGON

In March 2015, DS50 was filled with underground argon UAr. Major undertaking – extracted from Colorado mine and purified at FNAL.

Exhibits 1400 times smaller content of ³⁹Ar in UAr than AAr!

Low level of ³⁹Ar allows extension of DS to ten and hundred ton-scale detector.

DARKSIDE PROGRAM

Multistage program toward **background free** DM search. Very low background levels from all components, further reduced through active suppression.

DarkSide-prototype

DarkSide-50

DarkSide-20k

32 ton fiducial

50 kg fiducial

1 ton fiducial

DARKSIDE-50

Radon-free clean room Rn levels < 10 mBq/m³

> Muon veto – water Cherenkov detector (99% efficiency) (1000 tons, 11 m high)

Liquid scintillator veto for neutrons and gamma's (30 tons, 4 m diameter) Boron-loaded: PC + TMB

Inner detector TPC (sensitive DM target volume Filled with low 39Ar)

HIGH MASS WIMP SEARCH (> 10 GeV)

- 532 days data set search
- Blind analysis applied (blinded region defined on previous 70 day run)
- Background free (< 0.1 events in WIMP box over entire exposure)</p>

HIGH MASS WIMP SENSITIVITY

- > 90% C.L. exclusion
- > Excellent sensitivity to high mass WIMPs
- Background free (< 0.1 events in WIMP box over entire exposure)</p>

TOWARD LOWER ENERGY THRESHOLD

- S1 scintillation signal threshold at 2 keVee = 10 keVnr
- S2 ionization signal threshold at < 0.1 keVee = 0.4 keVnr</p>
- → give up S1 → trigger on S2 → lower energy threshold, BUT no PSD and S2/S1
 - Requires very low background level

PMTs have negligible dark rate at 88 K

center PMT sees ~23 photoelectrons

per electron

- high trigger efficiency
- single electron sensitivity

TOWARD LOWER ENERGY THRESHOLD

lonization yield from NR energy (Bezrukov model)

Measured with DS-50 neutron calibrations (AmBe, AmC) and neutron beam experiments SCENE and ARIS (scintillation yield converted to ionization yield with DS-50 data)

ReD experiment collecting data: sub-keV NR, directionality Background measured over a much wider energy range accounts for event rate well down to several electrons

- Expected signal assumes standard DM halo
- Uncertainties in signal dominated by fluctuations in ionization yield (width of ionization distribution in LAr unknown)

S2-ONLY SPIN-INDEPENDENT DM-NUCLEAR INTERACTION – 90% C.L.

Two cases: no quenching fluctuations and binomially distributed fluctuations

SUB-GeV DM-ELECTRON SCATTERING

 DM-electron interaction parametrized by a DM form factor with two limiting values (heavy and light mediator)

Are we ready for the next stage? \rightarrow DS-20k?

DS-20k 32 ton fiducial (39 ton total)

DS-20K DESIGN

DarkSide-20k at Gran Sasso

- 39-tonne LAr dual-phase TPC
- 32 tonnes fiducial
- Depleted liquid argon fill
- 20 m² of SiPM scintillation detecting surface on top and bottom
- background-free: < 0.1 'instrumental' background event in 100 tonne-year exposure

GADMC

• merger of all existing LAr dark matter experiments

NEW PHOTOSENSORS – SIPMs – PMTs no more

- 5×5 cm² single-channel modules (array of 24 SiPMs)
- < 10 ns timing resolution
- PDE > 40%
- Gain > 10^{6}
- 250 Hz dark rate + correlated noise (cryogenic electronics)
- Compact and radio-clean

50 modules under way 400 will follow in 2019

17

LOW RADIOACTIVITY ARGON – PROCUREMENT AND PURIFICATION

Urania plant

- extraction plant in Cortez, Colorado
- 250 kg/day UAr production (compare to 153 kg/6 years for DS-50)

Aria plant

- Distillation plant in Seruci, Sardinia
- production of depleted argon DAr with
 0.01 content of ³⁹Ar compared to UAr
- removal of impuritis such as Kr
- isotopic cryogenic distillation: utilizes tiny difference in the volatility of ³⁹Ar and ⁴⁰Ar
- two 350 m tall distillation columns under construction in Sardinia: Seruci I (30 cm diameter column) and Seruci II (1.5 m diameter column) with 10 depletion factor

Seruci 0 - prototype column

PROTODUNE CRYOSTAT + VETO AND TPC DESIGN

ProtoDUNE cryostat → no double cryostat → radioactivity reduction Gd loaded Poly(methyl methacrylate) PMMA shell veto detector PMMA ultra pure TPC (PMMA used in DEAP-3600), no need for stainless steel cryostat

SUMMARY AND OUTLOOK

- DS-50 demonstrated excellent performance and proven technology for wide rar WIMP masses:
 - best sensitivity for 1.8 5.5 GeV
 - background-free for > 10 GeV
- Ambitious dark matter search program with the Global Argon Collaboration
 - DarkSide-20k at LNGS (bg-free 100 tonne-year exposure)
 - Future massive detector ~ ktonne-year exposure (possibility of neutrino physics)
 - DarkSide-LM low mass DM search with DarkSide-Proto

DarkSide offers program of discovery complementary to LHC.

THE END

21

