Coherent Elastic Neutrino-Nucleus Scattering Expeirments

Diane Markoff NC Central University Triangle Universities Nuclear Laboratory Member of the COHERENT Collaboration

A neutrino elastically scatters off a nucleus via exchange of a Z, and the nucleus recoils as a whole; Coherent process up to $E_v \sim 50$ MeV

Initial and final states must be identical - neutral current elastic scattering

A neutrino elastically scatters off a nucleus via exchange of a Z, and the nucleus recoils as a whole; Coherent process up to $E_v \sim 50$ MeV

Neutrino scatters coherently off all nucleons - creates enhancement of the reaction cross section

Well understood Standard Model calculation - differential cross section with respect to T, the nuclear recoil energy, dependence on neutron number

 $d\sigma$ dT

Nucleons must recoil in phase

- \rightarrow low momentum transfer qR <1
- \rightarrow very low energy nuclear recoil

Experimental signature - nuclear recoil less than about 50 keV of energy deposited from nuclear recoil (Difficult at best!)

Max recoil energy is $^{2}E_{v}^{2}/M$

Example: ~ 30 MeV v on Ge gives 25 keV recoil energy

First proposed 44 years ago!

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

Also: D. Z. Freedman et al., "The Weak Neutral Current and Its Effect in Stellar Collapse", Ann. Rev. Nucl. Sci. 1977. 27:167-207

Overall Physics Reach of CEvNS

- Supernovae: Expected to be important in core-collapse SN processes and possible SN detection channel. CEvNS rates may help reinvigorate stalled shock waves. Information on all-flavor v flux and spectrum.
- Possible measurement mechanism for sterile neutrino search
- Nuclear Physics: nuclear form factors

g_A quenching - relevant for double beta decay reaction rates neutron skin depth - nuclear weak radius relevant for neutron stars

- Dark Matter: Important background for 10-ton direct searches
- Standard Model tests, eg: sin² θ_{Weff} for low Q (sensitive to dark Z boson models) non-standard interactions (NSI) of neutrinos - constrain parameters (NSI quark-ν interactions may interfere with interpretation of DUNE and NOVA results) neutrino magnetic moment

Oscillations to sterile neutrinos with CEvNS

Similar/movable detectors at multiple baselines - look for deficit and spectral distortion vs L,E

We have found that the planned TEXONO and COHERENT experiments offer good prospects of providing key information concerning the existence of light sterile neutrinos....could be complementary to charged-current appearance and disappearance searches. Kosmas et al. arXiv:1703.00054v2 [hep-ph] September 2017

CEvNS for understanding g_A quenching - $g_A^{eff} \approx 0.7 g_A$ CEvNS Cross Section

$$\frac{d\sigma}{dT_{coh}} = \frac{G_F^2 M}{2\pi} \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{2T}{E_v} \right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_v^2} \right]$$
$$G_V \approx \frac{1}{2} NF(Q^2) \qquad \qquad G_A \sim (net \, spin) F^A(Q^2)$$

If the nucleus has spin, then axial terms contribute to the cross section Axial contribution proportional to 1/N is larger for light nuclei - contributes to shape changes in the cross section

We are investigating the CEvNS sensitivity and N dependence

Gail McLaughlin - NuEclipse presentation Agust 2017 Review of g_A quenching - Suhonen Neutrino 2018

CEvNS to Measure Neutrino Magnetic Moment

Signature is distortion at low recoil energy E

"Neutrino Floor" for Dark Matter Direct Searches

Important low-energy background for 10 ton DM experiments

Measure CEvNS to understand nature of background signal (& detector response, DM interaction)

See for example Gelmini, Takhistov, Witte arXiv: 1804.01638v2 [hep-ph] for a discussion on the effect of neutrino interactions on the sensitivity of dark-matter experiments.

L. Strigari Private Communication October 2017 J. Billard, E. Figueroa-Feliciano, L. Strigari arXiv:1307.5458v2 (2013)

Historical Perspective - How to Measure CEvNS

CEvNS experiment → DM Experiments → CEvNS Experiments Better detector technology - based on years of Dark Matter expeirment development WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

Stronger neutrino sources - access to close proximity

CEVNS Measurements - Human Based Sources

Reactor CEvNS Efforts Worldwide

Experiment	Technology	Features	Location	
CONNIE	Si CCDs	100 g, 30 m from 3.8 MW core	Angra II, Brazil	
COvUS	HPGe	4 kg; 17 m from 4 GW core	Brokdorf, Germany	
MINER	Ge/Si cryogenic	10 kg, down to 2 m, 1 MW core	TAMU Texas, USA	
Nu-Cleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	gram scale, short range ~ 10 m from two 4.6 GW cores	Chooze Reactors, France	
vGEN	Ge PPC	1.6 kg; 10 - 12 m from 3 GW core	Kalinin, Russia	
RED-100	LXe dual phase	100 kg, 19 m from 3 GW core	KNPP, Russia	
Ricochet	Ge, Zn bolometers	355 m/467 m from two 4.6 GW cores	Chooze Reactors, France	
TEXONO	p-PCGe	1 kg, 28 m from 4 GW core	Kuo-Sheng Taiwan	

adoa Purging	
It from downsr	
1	
<u> </u>	PHT Gal(TL)
	NaI(TI)
+	
H-11	Bal(T1) Bal(T1)

Many novel low-background, low-threshold technologies

See H. Wong, Nu2018 talk for a more detailed survey

from Neutrino 2018:

COvUS reports first hint of reactor CEvNS

- Brokdorf 3.9 GW reactor
- 17 m from core
- 4 kg Ge PPC
- ~300 eV threshold

Rate compariso	on (all c	letectors):	
	counts	counts/(d·kg) (*)]
reactor OFF (114 kg*d)	582		
reactor ON (112 kg*d)	653		
ON-OFF (exposure corr.)	84	0.94	
Significance	2.4 σ	2.3 σ	Some systematic still under study

W. Maneschg, Nu2018

Stopped Pion Source: Spallation Neutron Source Oak Ridge National Laboratory (ORNL) Tennessee

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW About 1 MW at 1 GeV proton energy Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

Spallation Neutron Source - neutrino source 'for free'

SNS Neutrino Beam Timing Profile

2-body decay: monochromatic 29.9 MeV v_{μ} PROMPT $\rightarrow e^{+} + \overline{\nu_{\mu}} + \overline{\nu_{e}}^{2-body decay: range of energies}_{between 0 and m_{\mu}/2}_{DELAYED (2.2 \ \mu s)}$

Produces sharply pulsed time structure for background rejection factor ~ 10⁻⁴

Deployments in Neutrino Alley

Protons on Target

Neutron detectors removed - replaced with MARS a neutron monitoring detector

First Observation of CEvNS - at the SNS with 14.6-kg CsI[Na] detector

Peer Reviewed

4- see details

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy... + See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

D. Akimov et al., Science, 2017

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

First Observation of CEvNS - at the SNS with 14.6-kg CsI[Na] detector

We report a 6.7 σ significance for an excess of events, that agrees with the Standard Model prediction to 1 σ .

D. Akimov et al., *Science*, 2017 <u>http://science.sciencemag.org/</u>content/early/2017/08/02/science.aao0990

Beyond the Standard Model Constraints on NSI

A COHERENT enlightenment of the neutrino Dark Side

Pilar Coloma,^{1, *} M. C. Gonzalez-Garcia,^{2,3,4,†} Michele Maltoni,^{5,‡} and Thomas Schwetz^{6,§}

Phys.Rev. D96 (2017) no.11, 115007

If you allow for NSI, an ambiguity exists in determining mass ordering w/ LBL experiments: "LMA-Dark"

CEvNS measurements can place significant constraints to resolve the LMA-D ambiguity if SM rate is measured

1 σ , 2 σ allowed regions projected in ($\epsilon_{ee}^{~~uV}$, $\epsilon_{\mu\mu}^{~~uV}$) plane

First COHERENT results are already disfavoring LMA-D

The COHERENT collaboration

http://sites.duke.edu/coherent

~80 members, 20 institutions, 4 countries

DMM supported by NSF-HRD-1601174

COHERENT PLAN - SUITE OF TARGET MASSES Physics Motivation - Neutron Distribution Functions

The COHERENT Experimental Program

To unambiguously measure the coherent neutrino-nucleus cross section in multiple nuclei.

Development of precision measurements.

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	Future	
Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	Finish data-taking	
Ge	HPGe PPC	6	22	5	2019	~2.5-kg detectors	LAr
LAr	Single-phase	22	29	20	12/2016, upgraded summer 2017	Expansion to ~1 ton scale	
Nal[TI]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment summer 2016	Expansion to 2.5 ton , up to 9 tons	

Under development: D₂O based neutrino flux calibration measurement.... and much more!

Summary - CEvNS

- First unambiguous measurement in CsI made by the COHERENT collaboration at a stopped pion source, SNS located at ORNL
- Look forward to COvUS reactor result in the near term.
- Look forward to published 22 kg LAr result from COHERENT and possible updated CsI result.
- Expect additional experiment measurement results in next years.
- A number of papers use COHERENT measurement for limiting neutrino non-standard interactions - we'll see improvements with more results

Develop high-precision CEvNS techniques for sensitivity to Beyond Standard Model physics and open opportunities to apply this technique for precision studies of neutrino properties and nuclear physics → tool of tomorrow's neutrino physicists

APS-DNP/JPS HAW2018 Meeting

Wednesday evening - Mini-symposium Intersection of Neutrino Physics and Nuclear Physics CN.00007: Measurement of CEvNS with COHERENT at the ORNL SNS - Rex Tayloe

- CN.00008: First Results from a CEvNS Search with the CENNS-10 Liquid Argon Detector -Matthew R Heath
- CN.00009: Observation of Supernova Neutrino Bursts via CEvNS Adryanna Smith
- CN.00010: A Ton-Scale Nal Detector to Measure Coherent Neutrino-Nucleus Scattering and the Charged Current Neutrino Interaction on Iodine - Diane Markoff

FN.00001: A Precision Neutrino Flux Detector at the Spallation Neutron Source - Jason Newby

GA.00002: Division of Nuclear Physics Dissertation Award: First observation of coherent elastic neutrino-nucleus scattering and its future in searches for new physics -Grayson Rich

HA.00115: Characterization of SiPMs for COHERENT's proposed 1-ton Liquid Argon Detector -Benjamin Rand