

The SuperCDMS dark matter experiment

1 December 2023

John L. Orrell Research Scientist

PNNL-SA-192864

PNNL is operated by Battelle for the U.S. Department of Energy

SuperCDMS SNOLAB

- Design & Detectors
- Sensitivity
- Backgrounds
 - Overview
 - Tritium from cosmic rays
 - Cu surfaces & bulk ²¹⁰Pb
 - Kapton & Cirlex
- R&D detectors
 - HVeV
- Status
- Summary

W@SuperCDMS

SuperCDMS gratefully acknowledges agency support

supercdms.slac.stanford.edu

Experiment located at SNOLAB

Pacific

Northwest

2 km underground...

Experimental design

E-Tank

SNOBOX Cryostat and Detector Towers

Two complementary detector readout approaches

iZIP Detector

Pacific

Northwest

- Prompt phonon & ionization signals allow discrimination between nuclear and electron recoil events
- Event discrimination \rightarrow low background
- Trade-off:
 - ✓ Higher energy analysis threshold
- HV Detector
 - Drifting electrons and holes across a potential (V_b) generates many Luke phonons
 - Enables very low energy thresholds
 - Trade-off:
 - No event-by-event nuclear vs electron recoil discrimination

iZIP sensors measure $\mathbf{E}_{t}\text{,}$ and \mathbf{n}_{eh}

HV sensors measure E_t

Solid-state cryogenic detectors

- High Voltage (HV) Phonon-only measurement of ionization charge
- interleaved Z-dependent Ionization & Phonon (iZIP) – NR/ER discrimination

Complementary targets with multiple functionality

	Germanium	Silicon
HV	Lowest threshold for low mass DM Larger exposure, no ³² Si background	Lowest threshold for low mass DM Sensitive to lowest DM masses
iZIP	<u>Nuclear Recoil Discrimination</u> Understand Ge backgrounds	Nuclear Recoil Discrimination Understand Si backgrounds

Two nuclear targets provide for different dark matter scattering interaction rates

Sensitivity reach of SuperCDMS

• Direct detection search for spin-independent dark matter interactions

Backgrounds overview

• Tritium, ³²Si (in Si), activated copper, surface Rn progeny, material impurities

Spectra shown before detector resolution and application of single-scatter, fiducial volume, and nuclear recoil cuts 11

Tritium from cosmic ray spallation

- Exposure of Ge & Si crystals to secondary cosmic rays (e.g., n, p, μ) causes nuclear spallation producing a variety of long-lived, unstable nuclei
 - Tritium (³H) is especially problematic: $t_{\frac{1}{2}} = 12.3$ yr, pure β -decay, $E_{\beta}^{End} = 18.6$ keV

Tritium from cosmic ray spallation

- SuperCDMS SNOLAB Goal: Less than 60 days sea level equivalent exposure
 - One of four towers is composed of iZIPs with longer surface exposure
 - Crystals had <8 days seal level equivalent after shipment from Europe to SLAC</p>

Thank you MAJORANA & GERDA!

Shielded shipping container critical to meet exposure goal

DOI: 10.2172/1424835

PNNL-27319

SuperCDMS Underground **Detector Fabrication Facility**

Cost and Feasibility Report

March 2018

mond Runker ohn OrrelF

Department of Physics and Astronomy, and the Mitchell Institute for Fundamental ysics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

ENERGY Prepared for the U.S. Department of Ere under Contract DE-ACD5-208L01830

Available on www.OSTI.gov

Detector exposure status

- All SuperCDMS detector are underground at SNOLAB
 - Shipment #1: Towers 3 & 4 \rightarrow 9-12 May 2023 (route shown below)
 - Shipment #2: Towers 1 & 2 \rightarrow 13-16 November 2023

Tower 1 (iZIP) made from previously available crystals (long exposure time)

Surface backgrounds (Rn progeny)

• Radon progeny (long-lived ²¹⁰Pb) are potential surface background sources

Demonstration of

Cu surface background at detector sidewall

- SuperCDMS progressing from Soudan 10⁻³⁹
 - At Soudan: (based on T2Z1)
 - Bottom face: 20 nBq/cm²
 - Sidewall total: 1000 nBq/cm²

SNOLAB Goals:

- Detector faces: 25 nBq/cm²
- Sidewalls: 50 nBq/cm²
- Sensitivity study vs. sidewall activity
- Summary concern \rightarrow Cu cleanliness
 - Using acidified-peroxide etching followed by citric acid passivation

Tested on McMaster and Aurubis copper

Cleanliness tested with XIA Ultra-Lo1800 alpha counter by measuring polonium (²¹⁰Po), not lead (²¹⁰Pb) !!!

Cu surface background evaluation

- One year's worth of XIA Ultra-Lo1800 measurements on cleaned Cu surfaces
 - Shows unsupported ²¹⁰Po on Cu surface
 - Electroformed Cu doesn't show effect
 - Suggests ²¹⁰Pb in bulk of Cu
- XMASS measured ²¹⁰Po in bulk Cu
 - Inferring 17-40 mBq of ²¹⁰Pb per kg Cu
 - K. Abe et al., NIM A 884 (2018) 157-161
- In summary:
 - Cu surfaces are clean for SuperCDMS
 - Bulk ²¹⁰Pb in Cu is out of ²³⁸U equilibrium
 - R. Bunker *et al.*, NIM A 967 (202) 163870

Kapton & Cirlex trace radio-impurities

- SuperCDMS uses Kapton & Cirlex in electrical readout from detector towers
 - Anticipated 17% of Ge HV background of SuperCDMS SNOLAB experiment
 - Of this 17%... 81% is from equally Th and ⁴⁰K
- Kapton:
 - DuPont polyimide film
- Cirlex
 - Fralock product
 - Adhesively layered Kapton

LAYER 1

LAYER 4

-30 MIL

INNER SIG1 LAYER 2

INNER SIG2 LAYER 3

1.900

 SuperCDMS flex cable stack-up: 4-LAYERS

TOP

BOTTOM

.072"+/-.003

30 MIL CIRLEX, 1/2 OZ. COPPER (SLAC Supply)

CIRLEX, 1/2 OZ. COPPER (SLAC Supply)

13.250'

TOP COVERLAY, .5 MIL

BOTTOM COVERLAY, .5 MIL

Acceptable, but a target for materials R&D See next slide!

LAYER 2 COVERLAY, .5 MIL MIL KAPTON, 1/2 OZ. COPPER LAYER 3 COVERLAY, .5 MIL

Detector

PNNL efforts on clean Kapton

- Ultra-low radioactivity Kapton and copper-Kapton laminates
 - IJ Arnquist et al., Nucl. Instrum. Meth. in Phys. Res. Sec. A 959 (2020) 163573

Kapton	²³⁸ U [pg/g]	²³² Th [pg/g]	^{nat} K [ng/g]
Commercial HN	1080 +/- 40	250 +/- 8	44 +/- 18
Radiopure R&D	12.3 +/- 1.9	19 +/- 2	34 +/- 14

Kapton-Cu Laminates	²³⁸ U [pg/g]	²³² Th [pg/g]	^{nat} K [ng/g]
Commercial	158 +/- 6	24.1 +/- 0.9	< 210
Radiopure	9 +/- 4	20 +/- 14	160 +/- 80

- Ultra-low radioactivity flexible printed cables
 - IJ Arnquist *et al.*, **EPJ Techniques** and Instrumentation 10 (2023) 17

1. Laminate Selection	
2. Cut and Drill Laminate	
3. Cleaning at Q-Flex	1 1
	5
Shadow Seeding	
5. Electroplating	
6. Sanding	
7. Cleaning at PNNL	
8. Resist Coating	
+	
9. Developing	
40 Flablas	
TO. Etching	
11. Stripping	
+	
12. Drying	
12 Cleaning at DNNI	
15. Oleaning at FININE	
14. Coverlay Application	
15 Missostahian	
15. Microelching	
16. ENIG Processing	
+	
 Cleaning at PNNL 	

ables	²³⁸ U [ppt]	²³² Th [ppt]	^{nat} K [ppb]
Commercial	2670 +/- 30	260 +/- 10	170 +/- 50
Clean	31 +/- 2	13 +/- 3	550 +/- 20

Blue: Standard Step Orange Outline: Modified Step Orange: New Step Green: Step done at PNNL

SuperCDMS HV sensitivity in stages of study

Projected Limits

- OI Optimal Interval
 - No background assumption
- PLR Profile Likelihood Ratio
 - Employs background model

20

R&D HVeV detectors

- Developments using the athermal phonon sensor technology
 - R.K. Romani et al., Appl. Phys. Lett. 112 (2018) 043501

R&D HVeV detectors

Recent HVeV results & Cryogenic PhotoDetector (CPD)

Pacific

Northwest

NATIONAL LABORATOR

I Alkhatib et al., Phys. Rev. Lett., 127 (2021) 061801

Detectors underground, CUTE testing getting underway

• All SuperCDMS detector are underground at SNOLAB

Towers in storage

In CUTE

Pacific Northwest

Above ground pre-assemblies

Underground progress

Summary

- SuperCDMS searching for direct detection of low mass dark matter
 - Projected reach $\sigma \sim 10^{-43}$ cm² at 1 GeV/c² dark matter mass
 - All detector towers underground at SNOLAB
 - Main shield construction underway and detector operation in CUTE is active
- Anticipated backgrounds: Tritium, ³²Si, Rn progeny, material impurities
 - Developments during construction show paths to further reduction in the future
 - Highlighted background sources are of relevance to neutrinoless double beta decay
- Future detectors expected to probe yet lower mass dark matter candidates
 - Anticipate further R&D detector development in parallel with SuperCDMS construction
 - Developments will likely also improve sensitivity to 1-5 GeV/c² dark matter candidates

Thank you

