A Survey of Neutrinoless Double Beta Decay Experiments

Kate Scholberg, Duke University APS/JPS Hawaii 2023/DBD23 December 1, 2023

Disclaimer...

I do not work on neutrinoless double beta decay experiments!

This might make me "unbiased" but I may not have deep expertise!... (and apologies if I don't zoom in on your fave)

Neutrinoless Double Beta Decay

- observation would indicate:
 - neutrinos are Majorana
 - antimatterless matter is created
- light neutrino mediator is the nominal 3-flavor explanation
 - but can have other mediators in BSM scenarios

Experimental searches are based on nuclides for which NLDBD is energetically possible, and which cannot α , 1 β decay

For example:

Experimental strategy: look for peak in the two-electron spectrum corresponding to neutrinoless final state

The list of **special NLDBD isotopes** currently being pursued

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	$f_{ m nat}{}^{ m b}$	$f_{ m enr}{}^{ m c}$
		$[\mathrm{keV}]$	[%]	[%]
48 Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)	86
100 Mo	100 Ru	3034.40(17)	9.744(65)	99.5
116 Cd	$^{116}\mathrm{Sn}$	2813.50(13)	7.512(54)	82
130 Te	130 Xe	2527.518(13)	34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)	90
¹⁵⁰ Nd	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91
		want large Q value!	want high natural abundance!	or at leas ability to enrich

Agostini, Benato, Detwiler, Menéndez & Vissani, RMP 2022, arXiv:2202.01787

Observed half-life:

Observed half-life:

The Lobster Plot

If neutrinos are Majorana^{*}, experimental results must fall in the shaded regions Extent of the regions determined by uncertainties on mixing matrix elements and Majorana phases

and standard 3-flavor picture, light-neutrino exchange mechanism

Neutrino mixing parameters

$$|\nu_f\rangle = \sum_{i=1} U_{fi}^* |\nu_i\rangle$$
 $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}$
 M_1, m_2, m_3
 3 masses
 m_1, m_2, m_3
 $(2 \text{ mass differences} + absolute scale)$
 $\theta_{23}, \theta_{12}, \theta_{13}$
 1 CP phase
 δ
 $(2 \text{ Majorana phases})$
 α_1, α_2

Observables in oscillation experiments

N

1 \

Assuming 3 flavors, light-neutrino exchange mechanism for NLDBD:

for interpretation of NLDBD results

Remaining oscillation unknowns in the 3-flavor paradigm

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

More and better info to come from:

beams [LBL], burns [solar, JUNO],

bangs [SNe]... what will we know about mass ordering?

(... it's smelling like normal, but inverted is not ruled out...)

Projections from Snowmass

- Next ~5 years: maybe ~ 3σ from T2K + NOvA + JUNO
- DUNE/Hyper-K are next-generation long-baseline experiments
- DUNE will nail the mass ordering very rapidly

Where we are experimentally for NLDBD

Next experimental goal: cover the IO region

If ordering is inverted (or QD) we will be in a good place! Either: discover NLDBD! OR (neutrinos are Dirac OR BSM)

We could also have a high mass scale and discover NLDBD in the next generation ...

Otherwise, need to go lower...next goal for $m_{\beta\beta}$ is 1.5 meV, normal-ordering floor for $m_1=0$

But... Nature could have cooked up diabolical parameters and we could end up staring into the funnel of doom...

Athough it's still possible BSM could surprise us!

Back-of-the-envelope experimental sensitivity

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency } \\ N_{source}: \mbox{ number of isotope nuclei} \\ T: \mbox{ observation time } \\ UL(B(T) \ \Delta E): \mbox{ upper limit for expectation } \\ & \mbox{ of B background events in ROI of width } \Delta E \end{array}$

Go after the numerator:

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

ε: detection efficiency N_{source}: number of isotope nuclei T: observation time UL(B(T) ΔE): upper limit for expectation of B background events in ROI of width ΔE

Want lots of candidate isotope! At lifetime of 10^{26-27} yr (m_{$\beta\beta$}~ 50 meV in IO region) need ~ 10^4 moles (~ 1 tonne) for 1 count/yr

→ want high natural abundance, or effective isotope separation

Go after the denominator:

$$T_{1/2} > \frac{\ln 2 \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$$

 $\begin{array}{l} \epsilon: \mbox{ detection efficiency } \\ N_{source}: \mbox{ number of isotope nuclei} \\ T: \mbox{ observation time } \\ UL(B(T) \ \Delta E): \mbox{ upper limit for expectation } \\ & \mbox{ of B background events in ROI of width } \Delta E \end{array}$

- Want small ΔE to avoid the 2vββ "friendly fire" and exclude other background
- Generally want high Q value to keep away from background
- Beat down all other background ... ultra-cleanliness, underground location needed

Neutrinoless Double Beta Decay Experiments many, many isotopes and technologies

Recent and future experiments

				$m_{ m iso}$	$arepsilon_{ m act}$	$\varepsilon_{\mathrm{cont}}$	$\varepsilon_{\mathrm{mva}}$	σ	ROI	$\varepsilon_{ m ROI}$	ε	B	λ_b	$T_{1/2}$	m_{etaeta}
Experiment	Isotope	Status	Lab	[mol]	[%]	[%]	[%]	$[\mathrm{keV}]$	$[\sigma]$	[%]	$\left[rac{\mathrm{mol}\cdot\mathrm{yr}}{yr} ight]$	$\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$	$\left[\frac{\text{events}}{\text{yr}}\right]$	[yr]	$[\mathrm{meV}]$
High-purity Ge detectors (Sec. VI.B)															
GERDA-II	76 Ge	completed	LNGS	$4.5\cdot 10^2$	88	91	79	1.4	-2,2	95	273	$4.2\cdot 10^{-4}$	$1.1\cdot 10^{-1}$	$1.2\cdot 10^{26}$	93-222
MJD	76 Ge	completed	SURF	$3.1\cdot 10^2$	91	91	86	1.1	-2,2	95	212	$3.3\cdot10^{-3}$	$7.1\cdot10^{-1}$	$4.7\cdot10^{25}$	149 - 355
LEGEND-200	76 Ge	$\operatorname{construction}$	LNGS	$2.4\cdot 10^3$	91	91	90	1.1	-2,2	95	1684	$1.0\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$1.5\cdot 10^{27}$	27-63
LEGEND-1000	76 Ge	proposed		$1.2\cdot 10^4$	92	92	90	1.1	-2,2	95	8 7 3 6	$4.9\cdot10^{-6}$	$4.3\cdot10^{-2}$	$1.3\cdot 10^{28}$	9-21
Xenon time projection chambers (Sec. VI.C)															
EXO-200	136 Xe	completed	WIPP	$1.2\cdot 10^3$	46	100	84	31	-2,2	95	438	$4.7\cdot 10^{-2}$	$2.1\cdot 10^{+1}$	$2.4\cdot 10^{25}$	111 - 477
nEXO	136 Xe	proposed	SNOLAB	$3.4\cdot 10^4$	64	100	66	20	-2,2	95	13700	$4.0\cdot10^{-5}$	$5.5\cdot10^{-1}$	$7.4\cdot10^{27}$	6-27
NEXT-100	136 Xe	$\operatorname{construction}$	LSC	$6.4\cdot 10^2$	88	76	49	10	-1.0, 1.8	80	167	$5.9\cdot 10^{-3}$	$9.9\cdot 10^{-1}$	$7.0\cdot 10^{25}$	66 - 281
NEXT-HD	136 Xe	proposed		$7.4\cdot 10^3$	95	89	44	7.7	-0.5, 1.7	65	1809	$4.0\cdot 10^{-5}$	$7.2\cdot10^{-2}$	$2.2\cdot 10^{27}$	12 - 50
PandaX-III-200	136 Xe	$\operatorname{construction}$	CJPL	$1.3\cdot 10^3$	77	74	65	31	-1.2, 1.2	76	374	$3.0\cdot10^{-3}$	$1.1\cdot 10^{+0}$	$1.5\cdot 10^{26}$	45 - 194
LZ-nat	136 Xe	$\operatorname{construction}$	SURF	$4.7\cdot 10^3$	14	100	80	25	-1.4, 1.4	84	440	$1.7\cdot10^{-2}$	$7.5\cdot 10^{+0}$	$7.2 \cdot 10^{25}$	64 - 277
LZ-enr	136 Xe	proposed	SURF	$4.6\cdot 10^4$	14	100	80	25	-1.4, 1.4	84	4302	$1.7\cdot 10^{-3}$	$7.3\cdot 10^{+0}$	$7.1 \cdot 10^{26}$	20-87
Darwin	136 Xe	proposed		$2.7\cdot 10^4$	13	100	90	20	-1.2, 1.2	76	2312	$3.5\cdot 10^{-4}$	$8.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	17-72
Large liquid scintil	lators (Sec.	. VI.D)													
KLZ-400	136 Xe	$\operatorname{completed}$	Kamioka	$2.5\cdot 10^3$	44	100	97	114	0, 1.4	42	450	$9.8\cdot 10^{-3}$	$4.4\cdot 10^{+0}$	$3.3\cdot 10^{25}$	95 - 408
KLZ-800	136 Xe	taking data	Kamioka	$5.0\cdot 10^3$	55	100	100	105	0, 1.4	42	1143	$5.5\cdot 10^{-3}$	$6.2\cdot 10^{+0}$	$2.0\cdot10^{26}$	38 - 164
KL2Z	136 Xe	proposed	Kamioka	$6.7\cdot 10^3$	80	100	97	60	0, 1.4	42	2176	$3.0\cdot 10^{-4}$	$6.5\cdot 10^{-1}$	$1.1\cdot 10^{27}$	17 - 71
SNO+I	¹³⁰ Te	construction	SNOLAB	$1.0\cdot 10^4$	20	100	97	80	-0.5, 1.5	62	1232	$7.8\cdot10^{-3}$	$9.7\cdot 10^{+0}$	$1.8\cdot 10^{26}$	31 - 144
SNO+II	130 Te	proposed	SNOLAB	$5.1\cdot 10^4$	27	100	97	57	-0.5, 1.5	62	8521	$5.7\cdot 10^{-3}$	$4.8\cdot10^{+1}$	$5.7\cdot 10^{26}$	17-81
Cryogenic calorime	eters (Sec.	VI.E)													
CUORE	¹³⁰ Te	taking data	LNGS	$1.6\cdot 10^3$	100	88	92	3.2	-1.4, 1.4	84	1088	$9.1\cdot10^{-2}$	$9.9\cdot10^{+1}$	$5.1\cdot 10^{25}$	58 - 270
CUPID-0	82 Se	completed	LNGS	$6.2\cdot 10^1$	100	81	86	8.5	-2,2	95	41	$2.8\cdot 10^{-2}$	$1.2\cdot 10^{+0}$	$4.4\cdot 10^{24}$	283 - 551
CUPID-Mo	100 Mo	completed	LSM	$2.3\cdot 10^1$	100	76	91	3.2	-2,2	95	15	$1.7\cdot 10^{-2}$	$2.5\cdot 10^{-1}$	$1.7\cdot 10^{24}$	293-858
CROSS	100 Mo	construction	LSC	$4.8\cdot 10^1$	100	75	90	2.1	-2,2	95	31	$2.5\cdot 10^{-4}$	$7.6\cdot 10^{-3}$	$4.9\cdot 10^{25}$	54-160
CUPID	100 Mo	proposed	LNGS	$2.5\cdot 10^3$	100	79	90	2.1	-2,2	95	1717	$2.3\cdot 10^{-4}$	$4.0\cdot10^{-1}$	$1.1\cdot 10^{27}$	12-34
AMoRE-II	100 Mo	proposed	Yemilab	$1.1\cdot 10^3$	100	82	91	2.1	-2,2	95	760	$2.2\cdot 10^{-4}$	$1.7\cdot 10^{-1}$	$6.7\cdot 10^{26}$	15 - 43
Tracking calorimeters (Sec. VI.F)															
NEMO-3	¹⁰⁰ Mo	completed	LSM	$6.9\cdot 10^1$	100	100	11	148	-1.6.1.1	42	3	$9.4\cdot 10^{-1}$	$3.0\cdot 10^{+0}$	$5.6\cdot 10^{23}$	505 - 1485
SuperNEMO-D	82 Se	construction	LSM	$8.5\cdot 10^1$	100	100	28	83	-4.2,2.4	64	15	$3.3 \cdot 10^{-2}$	$5.0\cdot 10^{-1}$	$8.6\cdot 10^{24}$	201-391
SuperNEMO	⁸² Se	proposed	LSM	$1.2\cdot 10^3$	100	100	28	72	-4.1,2.8	54	185	$5.3\cdot 10^{-3}$	$9.8\cdot 10^{-1}$	$7.8\cdot 10^{25}$	67-131

ABDMV, RMP 2022, arXiv:2202.01787

General NLDBD experiment strategies

 $T_{1/2} > \frac{\ln 2 \ \varepsilon \cdot N_{source} \cdot T}{UL(B(T) \cdot \Delta E)}$

focus on the numerator with a huge amount of material (possibly sacrificing resolution)

focus on the denominator by squeezing down ∆E (various technologies) The "Final-State Judgement" Approach

try to make the background zero by tracking or other technique

...and many (most) experiments try to do more than one of these...

Brute Force Strategy Example: KamLAND-Zen

- "KamLAND-Zen 800": mini-balloon
 w/ 745 kg of ^{enr}Xe-loaded scintillator inside pure scintillator
- Kamioka mine in Japan

KamLAND-Zen Results

Most sensitive search to date: $m_{\beta\beta} < 36-156$ meV

Next plans: improve energy resolution, 1 ton mass

A Peak-Squeezer: CUORE

Cryogenic bolometer w/ ^{nat}TeO₂ @ LNGS

- source = detector
- calorimetric approach w/ high intrinsic energy resolution

Next generation: **CUPID** Li₂^{enr}MoO₄ *scintillating* bolometer w/ particle id

More Peak-Squeezers: Germanium

Germanium diode detectors enriched in ⁷⁶Ge; very good energy resolution

MAJORANA DEMONSTRATOR

- Sanford Lab in South Dakota
- segmented detector strategy

GERDA

- Gran Sasso, Italy

- detectors submerged in LAr

LEGEND tonne-scale program

LEGEND-200 @ LNGS

- Physics data-taking March 2023 (140 kg)
- Complete 200 kg array in early 2024

LEGEND-1000

- Site TBD (LNGS or SNOLAB)
- Conceptual design in progress

LEGEND-1000 simulated spectrum:

S. Elliott, S. Schönert

Final-State Judges

Pick out NLDBD signal from the background by precision final-state tracking

Segmented trackers (e.g., SuperNEMO)

Gas Xe TPCs (e.g., NEXT)

Possibly, pick out DBD signal by final-state-nucleus ID

Barium tagging in xenon liquid or gas

 136 Xe \rightarrow 136 Ba + 2e

B. Jones

Hybrid peak squeezer/brute-forcer/[final-state judging] LXe TPCs

EXO-200

- no tracking, but single (0v)
 -vs-multisite (bg) selection
- scintillation & ionization
- 80.6% enriched ¹³⁶Xe

- excellent background rejection by fiducialization
 - [+...long-term ideas for barium tagging]

And more creative ideas out there!

Draigat	Isosopa(s)	Detector technology, mein features, and references
Project	Isosope(s)	Detector technology, main leatures, and references
CANDI EST	48 Ca	Possible operation as envoyanic colorimeters
CANDLES	Ca	Aijmure et al. (2021) and Voshida et al. (2000)
	70 7	CIZ The second s
CODDAT	¹⁰ Zn,	CdZn1e semiconductor detector array.
COBRA	128,130 T	Room temperature; multi-isotope; high granularity.
	le	Arling et al. (2021) ; Ebert et al. $(2016a,b)$; and Zuber (2001)
	80 -	Amorphous ^{enr} Se high resolution, high-granularity CMOS detector array.
Selena	°2Se	3D track reconstruction ($O(10\mu \text{m})$ resolution); room temperature; minimal shielding.
		Chavarria et al. (2017)
		High-pressure gaseous 82 SeF ₆ ion-imaging TPC.
$N\nu DEx$	⁸² Se	$\lesssim 1\%$ energy resolution; precise signal topology; possible multi-isotope.
		Mei et al. (2020) and Nygren et al. (2018)
R2D2	¹³⁶ Xe	Spherical TPC.
		Single readout channel; inexpensive infrastructure.
		Bouet <i>et al.</i> (2021)
		High-pressure TPC operated in proportional scintillation mode.
AXEL	¹³⁶ Xe	High energy resolution; possible positive ion detection.
		Obara et al. (2020)
		Isotope loaded liquid scintillator.
JUNO	_	20 ktons of scintillator; multi-isotope; multi-purpose.
		Abusleme et al. (2021) and Zhao et al. (2017)
		Liquid scintillator with quantum dots or perovskites as wavelength shifter for Cherenkov light.
NuDot	_	Discriminate directional backgrounds; multi-isotope.
		Gooding et al. (2018); Graham et al. (2019); Winslow and Simpson (2012); Aberle et al. (2013)
		Zr-loaded Go to page 70 tor.
ZICOS	$^{96}\mathrm{Zr}$	Topology and particular ascrimination via Cherenkov light readout.
		Fukuda (2016) and Fukuda et al. (2020)
THEIA	_	Water-based loaded liquid scintillator with Cherenkov light readout.
		Topology and particle discrimination; multi-isotope; multi-purpose; 25 ktons of water.
		Askins et al. (2020)
		Opaque isotope-loaded liquid scintillator with wavelength shifting fibers for event topology.
LiquidO	_	Room temperature; multi-isotope; multi-purpose.
		Buck et al. (2019) and Cabrera et al. (2019)

<u>- 『日日</u>

Summary of recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Experiment	Isotope	Half-life limit (1026 years)	mββ limit (meV)
MAJORANA	Germanium-76	0.83	113-269
GERDA	Germanium-76	1.8	79–180
EXO-200	Xenon-136	0.35	93-286
KamLAND-Zen	Xenon-136	2.3	36-156
CUORE	Tellurium-130	0.22	90-305

Up-to-date limits from LRP

Sensitive background and exposure for recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Grey dashed lines: discovery sensitivity on the NLDBD T_{1/2} (isotope-independent)

Sensitive background and exposure for recent and future experiments

ABDMV, RMP 2022, arXiv:2202.01787

Sensitive exposure [mol yr]

Grey dashed lines: discovery sensitivity on the NLDBD $T_{1/2}$ (isotope-independent) Colored dashed lines: $m_{\beta\beta}$ sensitivities to get to the bottom of the IO region for *specific isotopes*, taking into account NME & phase space [specific ~optimistic NME assumption] \rightarrow want to be to the lower right of your colored line!

NLDBD in the US Long Range Plan

As ERA OF DISCOVERY G RANGE PLAN FOR NUCLEAR SCIENCE 2021 / USISMI J Tal

RECOMMENDATION 2

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

CUPID, nEXO, LEGEND @ LNGS & SNOLAB

The future is exciting for NLDBD experiments!

- we're starting to **clip the IO region** (KZ-800)
- next-generation tonne-scale experiments will get below it
- lots of activity and ideas

(Don't forget to watch out for giant squids)

