Results and Prospects of KamLAND-Zen

The 2023 Fall Meeting of the Division of Nuclear Physics of the American Physical Society and Physical Society of Japan Neutrinoless Double-Beta Decay Workshop December 1, 2023 Itaru Shimizu (Tohoku University)

KamLAND-Zen Collaboration

~50 physicists work on this project

Collaboration meeting in September, 2023

KamLAND-Zen

Zero Neutrino Double Beta

Why Xe?

Kamioka underground

KamLAND detector

- Isotopic enrichment (centrifugal) established
- Gas purification is possible
- Soluble to LS more than 3 wt%, easily extracted
- Slow $2\nu\beta\beta$ requires modest energy resolution

competing exp.XeEXO-200200 kgKamLAND-Zen745 kg

largest amount of ¹³⁶Xe !!

Upgrade of KamLAND-Zen

Present

Past

Future

KamLAND-Zen 400

Nylon balloon R 1.54 m

Xenon 320 – 380 kg

world top performance

Nylon balloon R 1.90 m

Xenon 745 kg

target $\langle m_{\beta\beta} \rangle \sim 40 \text{ meV}$

reduced radioactive BG

demonstration of scalability

KamLAND2-Zen

Xenon 1 ton

target $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

high light yield better performance

KamLAND-Zen 400

Phase-I (R < 1.35 m)

Phase-II (R < 1 m)

Improved Production Method

KamLAND-Zen 400

KamLAND-Zen 800

dust may be attached to the film during production

newly introduced

- goggle
- laundry twice a day
- welding machine
- more neutralizer
- cover sheet

Balloon Production Work

Balloon installation completed and started LS filling on May 10, 2018

top of the detector

detector inside view

Balloon installation completed and started LS filling on May 10, 2018

top of the detector

detector inside view

Background from Inner Balloon (IB)

0

 $X^{2}+Y^{2}(m^{2})$

sensitive volume : R < 1.0 m

> ×3 sensitive volume !!

sensitive volume : R < 1.57 m

 $X^{2}+Y^{2}(m^{2})$

Short-lived Spallation Products

Long-lived Spallation Products

xenon spallation products ~40% rejection efficiency

Event Selection

candidate

candidate

are fitted simultaneously

Fit to Energy Spectra for $0\nu\beta\beta$

0vββ candidate

(sensitive to $0\nu\beta\beta$ signal)

523.4 days livetime

long-lived candidate

(Long-lived BG constraint)

49.3 days livetime

0νββ best-fit : 0 event
upper limit : < 7.9 event at 90% C.L.
No positive signal, but we obtained a stringent upper limit

¹³⁶Xe $0\nu\beta\beta$ Decay Half-life

Limits on Neutrino Mass

Limits on Neutrino Mass

First search in the inverted ordering (IO) region

Future Prospects

Background Measures in Future

current status

Search sensitivity will be limited by the backgrounds from 2vββ and long-lived spallation

ROI event (2.35 < E < 2.70 MeV)

measures in future

→ energy resolution tail → light yield increase
 detector upgrade plan : KamLAND2-Zen
 → RI decay in film → scintillation balloon
 gamma or positron background
 → particle identification
 → spallation tagging with neutrons
 → new electronics

Particle Identification

MC shows KamNET rejects ~27% of long-lived background

Tagging of Long-lived Spallation Products

R&D for KamLAND2-Zen

Mirror

High Q.E. PMT

New liquid scintillator **X1.4**

 $\sigma_E @ Q$ -value = 4% \rightarrow 2%

x1.9

1000 kg enriched Xe

State-of-the-art electronics

more neutron tagging efficiency \rightarrow long-lived BG reduction

Imaging device

Light Collection Eff.

> x1.8

e⁻ / gamma identification \rightarrow long-lived BG reduction

Light Yield Increase by Mirror

LS: 13 m diameter

~1.8 times increase of light yield

Mirror Shape Optimization

20 inch PMT coverage 34%

light yield ~ photo-coverage

polygon entrance \rightarrow circle exit

flexible shape construction was achieved by G4TessellatedSolid method in Geant4

mirror shape

in 4×4 face

4 hexagons

2 squares

further reduction of gap between mirrors

KamLAND2 Prototype

KamLAND2 prototype

High performance of KamLAND2 will be demonstrated with the prototype detector

KamLAND2-Zen will cover the IO region target $\langle m_{\beta\beta}\rangle$ ~ 20 meV / 5 year

Imaging Device

Photo Sensor

Design of optical system

- large half angle of view : > 20°
- large depth of field : ± 2 m
- large photon collection efficiency
- resolution < 3 cm (real image)
- lens and spherical mirror in oil

design optimized by Zemax

photo sensor size ~20 cm with 1 mm position resolution

LAPPD is the best candidate

large sensitive area 20 cm × 20 cm high quantum efficiency ~30% @ 365 nm high position resolution ~1.3 mm high time resolution for single p.e. ~50 ps

Test of photo sensor performance is ongoing

Summary

- Neutrinoless double-beta decays provide an important probe for physics beyond the Standard Model.
- Results from KamLAND-Zen were presented.
 KamLAND-Zen limits on 0vββ at 90% C.L.

KamLAND-Zen 400 $T^{0v}_{1/2} > 0.9 \times 10^{26} \text{ yr}$ KamLAND-Zen 800 $T^{0v}_{1/2} > 2.0 \times 10^{26} \text{ yr}$ Combined $T^{0v}_{1/2} > 2.3 \times 10^{26} \text{ yr}$ NME calculations assuming $g_A \sim 1.27$ $\langle m_{\beta\beta} \rangle < 36-156 \text{ meV}$

First probe of the inverted mass ordering region!

• R&D for KamLAND2-Zen is ongoing aiming at a test of inverted neutrino mass ordering.