Searching for $0\nu\beta\beta$ decay with CUORE and CUPID

Jorge Torres (Yale), for the CUORE/CUPID collaborations Dec 1, 2023 (DNP/DBD Meeting, Hawaii)

Cryogenic Underground Observatory for Rare Events (CUORE)

•First milli-K bolometric $0\nu\beta\beta$ decay experiment reaching one-tonne scale.

• CUORE is located in Hall A of LNGS.

•3600 m.w.e of overburden

Wright Laboratory

CUORE's operation principle

CUORE's operation principle

Wright Laboratory

- External and internal shields to reduce backgrounds

CUORE's operation principle

Wright Laboratory

Jorge Torres, 2023 DNP Meeting (Hawaii)

→ Mass: 742 kg of TeO₂, 206 kg of ¹³⁰Te $\sim 50 \text{ kg·yr/month} @ > 90\% \text{ duty cycle}$ **---** Energy resolution: ~ 0.3% at $Q_{\beta\beta}$ Background: ~ 10^{-2} cts/(keV· kg·yr)

- Start of data-taking in April of 2017
- Steady collection since 2019 @ ~50 kg·yr per month
- 2 Tonne-yr (TY) exposure achieved in late 2022
- Goal: 3 tonne-yr of TeO₂ (~1 tonne-yr of ¹³⁰Te)

Data-taking and collected exposure

- Datasets ~1 month long.
- Calibration runs at start/end of dataset.
 - Uptime close to 90%.

- Start of data-taking in April of 2017
- Steady collection since 2019 @ ~50 kg·yr per month
- 2 Tonne-yr (TY) exposure achieved in late 2022
- Goal: 3 tonne-yr of TeO₂ (~1 tonne-yr of ¹³⁰Te)

Data-taking and collected exposure

- Datasets ~1 month long.
- Calibration runs at start/end of dataset.
 - Uptime close to 90%.

Jorge Torres, 2023 DNP Meeting (Hawaii)

Signal processing

7

singnal-to-noise ratio.

7

- $(^{232}\text{Th}+^{60}\text{Co}).$

Event selection for $0\nu\beta\beta$ decay search

Event selection for $0\nu\beta\beta$ decay search

Event selection for $0\nu\beta\beta$ decay search

- Fit to prominent TI-208 calibration peak in our detector.
- Modeled by sum of three gaussians.
- Detector response from extrapolation to physics data (prominent gamma peaks).
- Energy resolution and bias at $Q_{\beta\beta}$:
 - FWHM_{2nd} TY $(Q_{\beta\beta}) = 7.26^{+0.43}_{-0.47}$ keV

• $E_{\text{bias, 2nd TY}}(Q_{\beta\beta}) = -0.11^{+0.19}_{-0.25} \text{ keV}$

Detector response

- Bayesian fit in ROI [2465 keV, 2575 keV], with systematics as nuisance parameters.
- **No evidence** of $0\nu\beta\beta$ decay
- Median exclusion sensitivity: 3.1×10^{25} yr (90% C.I.)
- Half-life limit: $T_{1/2}^{0\nu} > 2.7 \times 10^{25}$ yr (90% C.I.)

2nd tonne-year results

- Combination of Ist TY (Nature) and 2nd TY limits
- Analyzed exposure: 2023 kg·yr
- No evidence of $0\nu\beta\beta$.
- Can set following limits:
 - $\Gamma_{0\nu} < 2.1 \times 10^{-26} \, \text{yr}^{-1}$ (90% C.l.)
 - $T_{1/2}^{0\nu} > 3.3 \times 10^{25} \,\text{yr}$ (90% C.I.)
 - $m_{\beta\beta} < 75-255 \text{ meV}$
- Final study including reprocessed (new analysis chain) Ist TY to follow.

2 ton-year (TY) results

• CUORE will continue to take data until it collects 3 tonne-year (1 tonne-year) of TeO₂ (130 Te).

CUORE's sensitivity limited by backgrounds in the ROI.

• Enter CUPID.

Quo vadis?

- CUPID is an upgrade to the successful CUORE experiment.
- Discovery sensitivity (3σ) :
 - $T_{1/2}^{0\nu} > 1.0 \times 10^{27} \text{ yrs}$
 - $m_{\beta\beta} = (13 21) \text{ meV}$
- CUPID can probe the IH region.
- New technology can decrease backgrounds and increase sensitivity.

The case for CUPID (CUORE Upgrade with Particle ID)

- CUPID is an upgrade to the successful CUORE experiment.
- Discovery sensitivity (3σ) :
 - $T_{1/2}^{0\nu} > 1.0 \times 10^{27}$ yrs
 - $m_{\beta\beta} = (13 21) \text{ meV}$
- CUPID can probe the IH region.
- New technology can decrease backgrounds and increase sensitivity.

The case for CUPID (CUORE Upgrade with Particle ID)

Lessons for CUPID from CUORE's background

CUPID

Lessons for CUPID from CUORE's background

CUPID

Lessons for CUPID from CUORE's background

- Exploit the scintillating nature of crystals.
- Exploration of dual readout for heat and light signals:
 - Bolometer coupled to light detector (Ge wafer linked to thermometer)
 - Different light-yield for alphas and betas
- Discrimination based on bivariate cut on light and heat signals.
- Build demonstrators to validate new technology.

Mitigating alpha backgrounds

CUPID-0

- Zn⁸²Se crystals, 95% enrichment ⁸²Se (5.17 kg) at LNGS (Italy)
- α -rejection efficiency > 99.9%
- Background index: 3.5×10^{-3} ccky
- $\Delta E = 21.8 \text{ keV} @ Q_{\beta\beta}$ (2998 keV)
- Physics results
- Bkg studies

10 kg-scale demonstrators

- Li¹⁰⁰₂MoO₄ crystals, 95% enrichment ¹⁰⁰Mo (2.34 kg) at LMS (France)
- α -rejection efficiency > 99.9%
- Background index: 2.7×10^{-3} ccky
- $\Delta E = 7.4 \text{ keV} @ Q_{\beta\beta} (3034 \text{ keV})$
- Physics results
- Bkg studies

CUPID-0

- Zn⁸²Se crystals, 95% enrichment ⁸²Se (5.17 kg) at LNGS (Italy)
- α -rejection efficiency > 99.9%
- Background index: 3.5×10^{-3} ccky
- $\Delta E = 21.8 \text{ keV} @ Q_{\beta\beta}$ (2998 keV)
- Physics results
- Bkg studies

10 kg-scale demonstrators

- Li¹⁰⁰₂MoO₄ crystals, 95% enrichment ¹⁰⁰Mo (2.34 kg) at LMS (France)
- α -rejection efficiency > 99.9%
- Background index: 2.7×10^{-3} ccky
- $\Delta E = 7.4 \text{ keV} \textcircled{0} Q_{\beta\beta} \text{ (3034 keV)}$
- Physics results
- **Bkg** studies

- Use CUORE's infrastructure
- 1596 Li_{2}^{100} MoO₄ crystals (45x45x45 mm³)
- 240 kg of 100 Mo (enrichment > 95%)
- 1710 Ge wafer light detectors
- α -rejection efficiency demonstrated to be > 99.9%
- Energy resolution: FWHM < 5 keV at $Q_{\beta\beta}$
- LD baseline resolution < 100 eV RMS
- Light yield: 0.3 keV/MeV

The CUPID Experiment

Jorge Torres, 2023 DNP Meeting (Hawaii)

- Performed studies with Ge wafer with anti-reflective SiO coating and NTD readout for CUPID baseline.
- Performed in a pulsetube cryostat at IJCLab.
- Reflecting foil and light detector position optimization.
- Baseline energy resolution 70-90 eV RMS.
- Results show that CUPID baseline meets necessary α -rejection **capabilities**, but saturates pile-up bkg constraint.

Light collection optimization and detector validation

Eur. Phys. J. C (2022) 81:104

- Relatively fast $2\nu\beta\beta$ decay of ¹⁰⁰Mo: $T_{1/2}^{2\nu} = 8.1 \times 10^{18} \,\mathrm{yr}$
- Slow pulses from heat readout cause random bkg coincidences in ROI.
- Goal: 0.5×10^{-4} ckky, rely on light detectors \Box
- Ways to address this issue:
 - Shorten rise-time: Transition edge sensors (TES)
 - Increase SNR: NTDs with Neganov-Trofimov-Luke (NLT) effect. (**Baseline**)
- New technologies demonstrated to reach needed B.I. level goals.

Studies on pile-up

- Relatively fast $2\nu\beta\beta$ decay of ¹⁰⁰Mo: $T_{1/2}^{2\nu} = 8.1 \times 10^{18} \,\mathrm{yr}$
- Slow pulses from heat readout cause random bkg coincidences in ROI.
- Goal: 0.5×10^{-4} ckky, rely on light detectors \Box
- Ways to address this issue:
 - Shorten rise-time: Transition edge sensors (TES)
 - Increase SNR: NTDs with Neganov-Trofimov-Luke (NLT) effect. (**Baseline**)
- New technologies demonstrated to reach needed B.I. level goals.

Studies on pile-up

- Relatively fast $2\nu\beta\beta$ decay of ¹⁰⁰Mo: $T_{1/2}^{2\nu} = 8.1 \times 10^{18} \,\mathrm{yr}$
- Slow pulses from heat readout cause random bkg coincidences in ROI.
- Goal: 0.5×10^{-4} ckky, rely on light detectors \Box
- Ways to address this issue:
 - Shorten rise-time: Transition edge sensors (TES)
 - Increase SNR: NTDs with Neganov-Trofimov-Luke (NLT) effect. (**Baseline**)
- New technologies demonstrated to reach needed B.I. level goals.

Studies on pile-up

- Goals:
 - Validate assembly procedure, thermalization, and mechanical structure
 - Study of glue type effects on NTD thermistor
 - Validate performance of LMOs and light-detectors
 - Tests on vibrations
- 14 floors, 28 crystals, 30 LDs, 2 runs so far.
- Future tests in 2024:
 - Tests with NTL LDs
 - Reduction of copper

Tower optimization/validation

CUPID's projected background index

- ROI Background Index (B.I.) goal: $< 10^{-4}$ cts/(keV kg yr) [vs. CUORE's 10^{-2} ckky]
- Upper limits and measurements from predecessor experiments.
- Well-defined mitigation strategies:
 - Muon veto.
 - Material selection, cleaning, shielding.
 - Delayed coincidence cuts (U/Th chains).
 - Lower noise, higher bandwidth electronics.
 - Improved light-detector timing resolution/SNR

Wright Laboratory

Jorge Torres, 2023 DNP Meeting (Hawaii)

Jorge Torres, 2023 DNP Meeting (Hawaii)

Jorge Torres, 2023 DNP Meeting (Hawaii)

- Experiment moving forward.
- Planning to take data by end of decade.
- CUPID will be among the world-wide suite of $0\nu\beta\beta$ decay experiments with discovery potential.

Jorge Torres, 2023 DNP Meeting (Hawaii)

Thanks!

- C12.00003: K. Vetter, Denoising Algorithms for the CUORE Experiment
- C12.00004: D. Mayer, Studying Track-Like Events with CUORE
- C12.00005 : S. Pagan, A search for solar axions with CUORE and other low-energy analyses
- D12.00007 : J. Camilleri, 100 Mo Neutron Activation Background Measurement for CUPID
- DB02.00106: S. Puranam, Improving CUORE Energy Reconstruction Using Principal Component Analysis
- E12.00001: V. Singh, Suppression of $2\nu\beta\beta$ pile-up events in CUPID using light detectors.
- E12.00002: C. Capelli, Transition-edge sensors with multiplexing readout for the CUPID experiment
- E12.00003: A. Drobizhev, Neutron Transmutation Doped (NTD) Germanium Thermistors for CUPID • M11.00003: V. Sharma, Tri-nucleon decay in ¹³⁰Te with CUORE
- MW01.00005: J. Torres, Searching for ovββ decay with CUORE and CUPID

