Current status and future prospects of the CANDLES experiment

大阪大学核物理研究センター 梅原さおり Umehara, Saori RCNP, Osaka University umehara@rcnp.osaka-u.ac.jp

Contents

Double beta decay

- ⁴⁸Ca measurement
- CANDLES projects
 - CANDLES III : Current operating detector system
 - First result for 130 days with BG free
 - New analyses for further background rejection
 - Next detector system
 - ⁴⁸Ca enrichment
 - Scintillating bolometer

Summary

Requirement of DBD experiment

\Box Sensitivity for $\langle m_{\beta\beta} \rangle$

$$| \langle m_{\beta\beta} \rangle^2 \propto \frac{1}{T_{1/2}^{0\nu\beta\beta}G_{0\nu}|M_{0\nu}|^2}$$

- $\langle m_{etaeta}
 angle$: Majorana neutrino mass
- $T_{1/2}^{0\nu\beta\beta}$: half-life
- $G_{0\nu}$: phase space factor

 $M_{0\nu}$:nuclear matrix element

Requirement for experiment

■ large target mass & low background ■ $T_{1/2}^{0\nu\beta\beta} \propto \sqrt{M_{detector}}$:with background $\propto M_{detector}$:without background * background free measurement = effective for high sensitivity

Double beta decay of ⁴⁸Ca

□ Why ⁴⁸Ca ? : advantage of ⁴⁸Ca

• higher $Q_{\beta\beta}$ value (4.27MeV) ...

 \rightarrow low background

because Q $_{\beta\beta}$ value is higher than BG

 $E_{max}=2.6MeV(^{208}TI, \gamma-ray)$

3.3MeV(²¹⁴Bi,β-ray)

- But small natural abundance 0.19%
- Double beta decay of ⁴⁸Ca by using CaF₂
 - CANDLES system
 - CANDLES III : current detector system
 - Next techniques : Enrichment + scintillating bolometer for new detector system

CANDLES

@Kamioka Observatory

Detector system for Double beta decay : CANDLES III Main detector : CaF₂ scintillator PMTs

Inside photo of CANDLES

CaF₂ scintillators

Acrylic frame

ICRR, Tokyo University Kamioka underground laboratory

http://gwcenter.icrr.u-tokyo.ac.jp/wpcontent/uploads/2011/02/LCGT.jpg Kamioka mine for zinc and lead

Kamioka Lab for underground sciences

1000 m.w.e. depth
400 km away from Oaska

South Korea

O Shenyang 沈阳市

CANDLES : double beta decay KamLAND : neutrino & double beta decay Super Kamiokande : neutrino NewAGE : dark matter KAGRA : gravitational wave

Umehara, Saori, 1st Dec. 2023, DBD2023

Kamioka~Osaka : ~400 km Kamioka~Tokyo : ~350km

Osaka

Kamioka

Yokohama Tokyo

CANDLES III

Ref : K. Nakajima et al, Astroparticle Phys, 100, (2018), 54–60 Ref : T. Iida et al, Nucl. Inst. Meth. A986, (2021), 164727

- \Box CaF₂ scintillator (CaF₂ (pure))
 - 305kg (96modules × 3.2kg)

■ ⁴⁸Ca:350g

- Liquid scintillator (LS)
 - 4π active shield(2m³)
- 62 Large photomultiplier tube
- Shielding system
 - Pb : 10-12cm
 - B₄C sheet : 5mm

- CANDLES tank(stainless steel)
 - Pb(γ-ray shield)
- B sheet(neutron shield)

Shield construction

Shielding system

Pb shield, B₄C sheet

Pb total mass : ~50ton

Result

Result of measurement for 130days Result with 21 high purity CaF₂

	result			
0vββ efficiency	0.36(21CaF ₂)			
Num. of eve.(exp)	0			
Expected BG	1.02			
Half life of ⁴⁸ Ca	>5.6 × 10 ²² year			
Sensitivity	2.8 × 10 ²² year			
Ref : Phys. Rev. D103, (2021), 0920 * comparable to most stringent limit of ⁴⁸ Ca ELEGANT VI measurement time : 4947kg • day(2 years <) half life limit : 5.8×10 ²² year				
*Achieved background	rate			

- < 10^{-3} events/keV/year/(kg of ^{nat}Ca)
- comparable to lowest background level

- experimental data
 simulation(total)
- ____ γ-ray from N capture
- contamination in CaF₂ (²⁰⁸Tl and ²¹²BiPo)
 2vββ

Improvement of Analyses

For background free measurement

- Measurement time : 130 days + 652 days
- Improved analyses for background rejection
 - ²¹²Bi²¹²Po(pile up events) rejection : finished
 - by rise shape observation of pulse shape
 - ²⁰⁸TI rejection : in progress

by identification of prompt ²¹²Bi α decay

Umehara, Saori, 1st Dec. 2023, DBD2023

Rejection effi. of ²¹²Bi²¹²Po >99.9%, survival probability for $0\nu\beta\beta$ >98%

²⁰⁸TI rejection : past analysis

G. Miyoshi(M thesis)

Position distribution of ²⁰⁸TI

"Multi-hit" on two CaF₂ crystals

Identification by using distance of ²¹²Bi²⁰⁸TI event position

²⁰⁸TI event position simulation by using photoelectron distribution for each PMTs

Umehara, Saori, 1st Dec. 2023, DBD2023

G. Miyoshi(M thesis)

Position distribution of ²⁰⁸TI

"Multi-hit" on two CaF₂ crystals

□ Identification by using distance of ²¹²Bi²⁰⁸TI event position

²⁰⁸TI event position simulation by using photoelectron distribution for each PMTs

Future CANDLES

Next step of double beta decay measurement

		CANDLES III	Next detector system
	⁴⁸ Ca Abundance	0.187%	50%
	⁴⁸ Ca Weight	0.35 kg	600 kg ~
	Energy Resolution	6%	1.0% (required)
	$\langle m_{ m u} angle$ sensitivity	500meV	~5 meV
	Feature	Cooling CaF2 Low BG	Enrichment of ⁴⁸ Ca Scintillating bolometer
$ \langle m_{\nu} \rangle = 5 meV $ Energy resolution 0.045 $4%$ (FWHM) $0.045 $ $2\nu\beta\beta$ 0.5% 0.03 $0.025 $ $0.020.015 $ $0.015 $ 0.01		$ \begin{array}{c} \text{rgy resolution} & \Box & \text{Larg} \\ \text{FWHM} \\ & $	ge amount of ⁴⁸ Ca For high sensitivity : Increase by enrichment - limited by small mass of ⁴⁸ Ca ther energy resolution Fo reduce 2vββ events

Umehara, Saori, 1st Dec. 2023, DBD2023

Fukui Univ.: H.Niki, I.Ogawa

introduction of laser isotopic separation(LIS)

Blue laser : stabilization

S. Tokita(ICR, Kyoto) & N. Miyanaga(ILT)

- Test for laser stabilization
 - Stabilization by PDH method
 - Control signal : sent to each slave laser
 - Wavelength : adjusted by temperature control

Experiment of wavelength stabilization

The laser wavelength was stabilized in 2 x 10⁻⁵ nm width

Next detector system: scintillating bolometer

- **Ξ** Expected BG: $2v\beta\beta$ events, α-rays
- bolometer: good energy resolution
 - For reduction of BG affects from 2vββ events
- Scintillating bolometer: good PI ability
 - For reduction of BG affects from α-ray

Summary

CANDLES project

CANDLES III : in Kamioka laboratory

We installed the shielding system.

BG from neutron capture is reduced by ~1/100

Obtained half-life limit: >5.6 × 10²² year

New result for 778 days will be reported

with new background rejection analyses

- ²¹²BiPo rejection by CNN analysis
- ²⁰⁸TI rejection

Next detector system \rightarrow to search for < 10meV region</p>

We will apply ;

■ Enrichment of ⁴⁸Ca :⁴⁸CaF₂

Now on stage of "cost effective" mass production

CaF₂ scintillating bolometer