

DBD23 Hawaii

U.S. DEPARTMENT OF ENERGY Office of Science

Searching for $0\nu\beta\beta$ in ^{76}Ge

Current limits on the $0\nu\beta\beta$ half-life in ^{76}Ge are around 10^{26} yrs

Achieved with quasi-background-free measurements ~100 kg-yrs of exposure

High purity germanium detectors have many advantages in this search:

- Well understood detector technology
- High detection efficiency
- Low intrinsic backgrounds
- Excellent energy resolution
- Background rejection techniques through pulse-shape-based event topology
- Long history of $0\nu\beta\beta$ searches

Status and Prospects of the LEGEND Experiment

Ann-Kathrin Schuetz

Friday @ DBD23

Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors, probing additional physics beyond the standard model, and informing the design of the next-generation LEGEND experiment

Source & Detector: Array of p-type, point contact detectors 30 kg of 88% enriched ⁷⁶Ge crystals - 14 kg of natural Ge crystals Included 6.7 kg of ⁷⁶Ge inverted coaxial, point contact (ICPC) detectors in final run **Excellent Energy Resolution**: 2.5 keV FWHM @ 2039 keV and Analysis Threshold: 1 keV

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials

Reached an exposure of ~65 kg-yr before removal of the enriched detectors for the LEGEND-200 experiment at LNGS

Continuing to operate at the Sanford Underground Research Facility with natural detectors for a ^{180m}Ta decay search V.E. Guiseppe - DBD23 - 2 Dec. 2023

MAJORANA DEMONSTRATOR

Sanford

MAJORANA Run Configuration & Timeline

The MAJORANA Approach to Backgrounds

Ultra-pure Materials

In-house production of underground electroformed Cu

Custom Electronics and Components

V.E. Guiseppe - DBD23 - 2 Dec. 2023

Custom front-end boards that use fine coaxial cable with clean connectors

Controlled Handling

Validated cleaning procedures N₂-purged assembly and storage of parts

Excellent Energy Resolution

FWHM of 2.5 keV at $Q_{\beta\beta}$ of 2039 keV (0.12%) is a record for $0\nu\beta\beta$ searches

Charge trapping correction improves FWHM at 2039 keV from 4 keV to 2.5 keV

Calibrated on weekly ²²⁸Th calibration data

²²⁸Th line source deployed during calibration

IEEE Trans. Nucl. Sci. 68 359 (2021)

PRC 872 045503 (2023)

NIMA 872 16 (2017)

JINST 18 P09023 (2023)

Energy estimated via optimized trapezoidal filter of ADC-nonlinearity-corrected traces with charge-trapping correction

DEMONSTRATOR, measured using ²²⁸Th calibration data

Detector waveform is examined to determine topology of an event

Final Neutrinoless Double-Beta Decay Result

Frequentist Limit:

$$m_{\beta\beta} < 113 - 269 \text{ meV}$$

MAJORANA DEMONSTRATOR Background

MAJORANA DEMONSTRATOR Background Excess

Characteristics of background excess:

Dominated by ²³²Th decay chain — excess apparent at ²⁰⁸Tl, especially 238 keV and 2615 keV

Strong evidence excess is located near Module 1 feedthrough interface

11

Systematic fitting campaign localized the major source of the excess to a component above the array

Major Background Sources

The dominant backgrounds in the Demonstrator are not from a near-detector region that would pose problems for LEGEND

Recent Progress in the MAJORANA DEMONSTRATOR Background Model

Ethan Blalock @ Hawaii2023

A Study of MAJORANA DEMONSTRATOR Backgrounds with **Bayesian Statistical Modeling** Christopher R. Haufe, UNC-CH - PhD Dissertation - 2023

Energy (keV)

An Improved Background Model and Two-Neutrino Double-Deta **Measurement for the MAJORANA DEMONSTRATOR**

AnnaL. Reine, UNC-CH. - PhD Dissertation - 2023

Double Beta Decay to Excited States

An inherently multi-site signal topology:

A "source" detector will have a broad energy spectrum from $\beta\beta$

The "gamma" detector will measure energy peaked at the γ energies

41.9 kg y of isotopic exposure

[1] M. Agostini et al. (GERDA Collaboration), J. Phys. G 43, 044001 (2015).

[2] A. Morales, et al., Nuovo Cim. A 100, 525 (2008).

[3] B. Maier (Heidelberg Moscow Collaboration), Nucl. Phys. B – Proc. Suppl. 35, 358 (1994).

[4] A. S. Barabash, A. V. Derbin, L. A. Popeko, and V. I. Umatov, Z. Phys. A 352, 231 (1995).

Decay Mode	Det. efficiency (M1, M2)	T _{1/2} prev. limit (90% Cl)	T _{1/2} new limit (90% Cl)	T _{1/2} sensitivity (90% Cl)
$a_{.s.} \xrightarrow{2\upsilon\beta\beta} 0_1^+$	2.4%, 1.0%	$> 3.7 \cdot 10^{23} y$ [1]	$> 7.5 \cdot 10^{23} y$	$> 10.5 \cdot 10^{23} y$
$a_{.s.} \xrightarrow{2\upsilon\beta\beta} 2_1^+$	1.4%, 0.6%	$> 1.6 \cdot 10^{23} y$ [1]	$> 7.7 \cdot 10^{23} y$	$> 10.2 \cdot 10^{23} y$
$a_{.s.} \xrightarrow{2\upsilon\beta\beta} 2_2^+$	2.2%, 0.8%	$> 2.3 \cdot 10^{23} y$ [1]	$> 12.8 \cdot 10^{23} y$	$> 8.2 \cdot 10^{23} y$
$a_{.s.} \xrightarrow{0 \upsilon \beta \beta} 0_1^+$	3.0%, 1.2%	$> 1.3 \cdot 10^{22} y [2]$	$> 39.9 \cdot 10^{23} y$	$> 39.9 \cdot 10^{23} y$
$a_{.s.} \xrightarrow{0 \upsilon \beta \beta} 2_1^+$	1.6%, 0.7%	$> 1.3 \cdot 10^{23} y$ [3]	$> 21.2 \cdot 10^{23} y$	$> 21.2 \cdot 10^{23} y$
$a_{.s.} \xrightarrow{0 \upsilon \beta \beta} 2_2^+$	2.3%, 1.0%	$> 1.4 \cdot 10^{21} y [4]$	$> 9.7 \cdot 10^{23} y$	$> 18.6 \cdot 10^{23} y$

Using date collected **up to 2019**, set the **most stringent limits** to date for $\beta\beta$ to each excited state of ⁷⁶Se due to:

Operating an array in vacuum: high detection efficiency

Exquisite energy resolution for identifying peaks

Low environmental backgrounds & analysis cuts V.E. Guiseppe - DBD23 - 2 Dec. 2023

13

New: Double Beta Decay to Excited States

Using the full dataset of the experiment (97.4 kg-y isotopic exposure), MAJORANA will produce an improved limit

A projected half-life sensitivity of 2.2 x 10²⁴ yr

V.E. Guiseppe - DBD23 - 2 Dec. 2023

Preliminary result for $2\nu\beta\beta$ of 76 Ge to 0^{+}_{1} excited state of 76 Se

Isotopic Exposure: 36.6 kg-y

Detection Efficiency: 2.7% (M1), 1.4% (M2)

Background Index (after cuts): 0.025 cts/keV-kg-y

Compared to previous analysis, upgrades have improved detection efficiency, with similar background reduction

90% Sensitivity: $T_{1/2} > 1.1 \times 10^{24} \text{ yr}$

90% Limit: T_{1/2}> 1.2 x 10²⁴ yr

Rich and Broad Physics Programs

Tantalum: The Next DEMONSTRATOR Chapter

MAJORANA DEMONSTRATOR has been reconfigured with single module of natural detectors

Searching for decay of ^{180m}Ta, nature's longest lived metastable isotope

17 kg tantalum disks 2 g ^{180m}Ta

23 natGe BEGe detectors

Illustration by Sandbox Studio, Chicago with Kimberly Boustea

09/06/22 | By Erin Lorraine Broberg

Majorana Demonstrator finds 'tantalizing' new purpose

Scientists are using a detector originally designed to study neutrinos to pin down an elusive nuclear physics measurement.

Constraints on the decay of ^{180m}Ta Steve Elliott @ Hawaii2023

Lower limits on the decay half-life of ^{180m}Ta

Started taking data with first module in 2015 and has completed enriched Ge data-taking in 2021 Excellent energy resolution of 2.5 keV FWHM @ 2039 keV, best of all 0vßß experiments Latest limit on $0v\beta\beta$ of $T_{1/2} > 8.3 \times 10^{25}$ yr (90% C.I.) from 64.5 kg-yr exposure

Leading limits in the search for double-beta decay of ⁷⁶Ge to excited states

An unblinded analysis with 97.4 kg-y of data will have a projected half-life sensitivity of 2.2 x 10²⁴y

uncertainties

Including a measurement of $2\nu\beta\beta$ half-life with evaluated uncertainties

many new results

BSM physics results extracted in wide energy range with various analysis techniques

Continuing operation with natural detectors for other physics (e.g. decay of ^{180m}Ta)

This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

MAJORANA DEMONSTRATOR Summary and Outlook

- Set a new upper limit on $2\nu\beta\beta$ of 76 Ge to 0^{+}_{1} excited state of 76 Se using 36.6 kg-y of open data from the full dataset
- Working towards the publication of a background model including fits over the full exposure and evaluations of systematic
- Low background + energy resolution + multiple years of high-quality data allows for broad physics program, yielding

V.E. Guiseppe - DBD23 - 2 Dec. 2023

18

The MAJORANA Collaboration

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spai Clara Cues

> **Duke University, Durham, NC, and TUN** Matthew Bus

> > Indiana University, Bloomington, Walter Pett

Joint Institute for Nuclear Research, Dubna, Russ Sergey Vasily

Lawrence Berkeley National Laboratory, Berkeley, C Yuen-Dat Chan, Alan Po

Los Alamos National Laboratory, Los Alamos, N Pinghan Chu, Steven Elliott, In Wook Kim, Ralph Massarczyk, Samuel J. Meij Keith Rielage, Danielle Schaper, Sam Watkins, Brian Z

National Research Center 'Kurchatov Institute' Institute of Theoretical and Experimental Physic Moscow, Russ Alexander Baraba

> North Carolina State University, Raleigh, NC and TUN Matthew P. Green, Ethan Blalock, Rushabh Ga

Oak Ridge National Laboratory, Oak Ridge, T Vincente Guiseppe, José Mariano Lopez-Castaño, David Radford, Robert Varner, Chang-Hong

TUNL

1

THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

Sanford	
Underground	
Research	
Facility	

in: sta	<mark>Osaka University, Osaka, Japan:</mark> Hiroyasu Ejiri
NL: sch	Pacific Northwest National Laboratory, Richland, WA: Isaac Arnquist, Maria-Laura di Vacri, Eric Hoppe, Richard T. Kouzes
IN:	South Dakota Mines, Rapid City, SD:
us	Cabot-Ann Christofferson, Sam Schleich, Ana Carolina Sousa Ribeiro, Jared Thompson
ia:	University of North Carolina, Chapel Hill, NC, and TUNL:
/ev	Kevin Bhimani, Brady Bos, Thomas Caldwell, Morgan Clark, Julieta Gruszko, Ian Guinn, Ch Haufe, Reyco Henning, David Hervas, Aobo Li, Eric Martin, Anna Reine, John F. Wilkerson
: A:	
on	University of South Carolina, Columbia, SC:
M :	Franklin Adams, Frank Avignone, Thomas Lannen, David Tedeschi
jer,	University of South Dakota, Vermillion, SD:
hu	C.J. Barton, Laxman Paudel, Tupendra Oli, Wenqin Xu
cs, sia: ush	<mark>University of Tennessee, Knoxville, TN:</mark> Yuri Efremenko
NL: ala	University of Washington, Seattle, WA: Micah Buuck, Jason Detwiler, Alexandru Hostiuc, Nick Ruof, Clint Wiseman
T <mark>N:</mark> Yu	Williams College, Williamstown, MA: Graham K. Giovanetti

hris

*students

Z

19