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Neutrino Experiment with a Xenon TPC (NEXT)

Ov[33 experiment with a high-pressure gaseous TPC using
136Xe — 136B32* +2e (2.5 MeV)

FRANCE §

Canfranc Underé‘
§ Laboratory

NEXT is an international collaboration

The experiment is being hosted at the
Canfranc Underground Lab in the
Spanish Pyrenees

Canfranc
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‘The Detector Concept

* High-pressure gas TPC with electroluminescent amphﬁcatlon
+ Sub-percent energy resolution
- OQvBP tracks are about 20 cm long in 10 bar — Tracking!

EL Region

Electric Field

\Light (S1)
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High-Pressure Gas

Tracking Plane (SiPMs)

Energy Plane (PMTs)
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The NEXT Program S

» Series of High Pressure Gaseous Xenon Time Projection Chambers with
a rich R&D program
- NEXT-100 is the latest experiment and is in the final stages of construction!
We are here!
!

/ Prototypes \ / NEXT-White \ / NEXT—100(1000N ( NEXT-BOLD \

2010-2014 2015-2021 2022-2026

Barium tagging for background-free
Demonstration of detector concept Background model assessment Neutrinoless double beta decay experiment in 136Xe (1028 y)
2v$3 measurement for 138Xe search in 13¢Xe (1027 y)

2009 2014 2015 2021 2022 2026 2027
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The NEXT-White
Experiment
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Calibration in NEXT m,f

"« NEXT uses several radioactive sources to
calibrate the detector

Geometric Corrections

y (mm)

e Low energy: 83MKr (short half-life ~1hr)

- Point-like depositions (41.5 keV) uniformly T g
distributed throughout the active volume Htetime Corrections

-+ Calibration maps generated for geometrical | .
and lifetime corrections P B ]

- Continuous monitoring of detector conditions =~ =% N
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* High energy: 98Tl (2615 keV) and 13°Cs (662
keV): o
+ Energy resolution at Q value
+ Energy scale
-+ Energy resolution vs E

JHEP 10 (2019) 230; JINST 13 (2018) no.10, P10020
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Topology reconstruction

Gammas produced from natural radioactive decay chains
near signal region (Q = 2.458 MeV)

- 28T >y at 2.614 MeV

-~ 2B >y at 2.447 MeV

Reconstruction of the NEXT-White Data
topology allows for
effective rejection of
single electron events

* Richardson-Lucy
deconvolution to
improve track resolution

S0

 “blobs” at end of tracks

used to identify 2e" vs
le
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NEXT-White physics nS
"« Measurement of the 2B half-life s rev c 105, 055501 \
* Search for Ovpf3 with 3.5 kg of xenon at 10 bar

e Technique employed of using depleted xenon to estimate
backgrounds is novel in the field of Ov(3[3

Background-Model Dependent Background-Subtraction
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The NEXT-100
Experiment



. N EXT_1 OO J. High Energ. Phys. 2016, 159 (2016) d

* Scales up NEXT-White by e
a factor of two consisting Sopum @) 15 ber 5.8 mm

of ~100 kg xenon

e Detector 1 m diameter
with 1.3m drift length

* Muon veto to reduce
cosmogenics

Lead castle Inner copper shielding
20 cm thick 12 cm of ultra-pure copper

Goals:
-+ Energy resolution <1% FWHM
~ Improved radioactive budget at 1 count/yr in the ROI
- Competitive search for Ov[3[3
+ Prepare for tonne-scale
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NEXT-100 Assembly

nS

Stainless-steel pressure vessel + lead castle for shielding
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PMT energy plane
installation with
sapphire pressure
windows in final stages



NEXT-100 Assembly

Inner copper shielding

Field cage assembled and inserted
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Field cage interior with transparent cathode Teflon reflector panels with TPB
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NEXT-100 Assembly

Electroluminescent region has been installed

NEXT-100 is now completing the final stages of construction
and will begin detector commissioning steps in 2024

A rve K Mistry



NEXT_1OO EL Reglon arXiv: 2311.03528

e Simulating electroluminescence accurately

O
is important, we have improved our j
simulations! ®
. . . . . . Gate
o ELemISSIOn tlmlng prOflle Shape is = e 1 ............... HV
proportional to the electric field and depends Q}\@f
on the mesh alignment o :\:\
-+ We find mesh alignment does not impact AdJ'r; ______________ .
energy resolution significantly
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Electrostatic Deflection of EL 231103528 | f

o Measurements of the

) _ NEXT-100

electrostatic deflection NEXT-100 7

EL region just before installation -4

were taken e
* Handle of the expected deflection £33

as a function of the field strength  g-14

- Energy resolution is not expected g I
to be impacted significantly for 2.0 e = e —0e o
N EXT_ 100 _400Radial_§igt(:)ance fr(?m centeg(og) [mm]400
500 NEXT-100 Mesh A 500 NEXT-100 Mesh B
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001y — e 40611 §—eer—§—dsom

g Tension best fit: 990+/-45 N g Tension best fit: 835+/-40 N
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Towards the
Tonne Scale



Towards the tonne scale orXiv: 200506467 f

Tonne-scale detector required to reach target sensitivities towards
T1,2 ~10%8yr and cross the inverted hierarchy region

* Minimal background acceptance
requirements

, Symmetric TPC design
- Estimated background 0.09 to 0.27 n — i
count/(tonne year ROI) ¥ g
* Modify TPC: symmetric design helps 5 # g
reduce drift time (= reduce diffusion) Z B ==
* NEXT-tonne will be a multi-module
system with ongoing R&D for future i - 1
modules including barium tagging e : ok,
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NEXT-HD: first tonne scale module \

* Optical fibres around barrel of the TPC L i
for energy measurement | e
+ Detection via SiPM removing the use of T | o

PMTs which are a significant source of
radioactivity

(Optical Fibers) A

|Anode (0V)

. : ~
* Dense SiPM plane readout for high | |
resolution tracking | ..

Tracking Plane (TP)

* Potential use of additives:
~ Use of gas additives (e.g. “He) to reduce
diffusion

~ 3He to reduce neutron capture on 13%Xe
- which will be a contributing
background for NEXT at this scale

NIMA A 905 (2018); JHEP 01 (2019) 027;
JINST 14 (2019) PO8009; JHEP 04 (2020) 034  J. Phys. G: Nucl. Part. Phys. 47 075001
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NEXT Barium
Tagging Program



NEXT-BOLD: making barium shine

Barium daughter drifts in opposite direction to electrons

Tagging the barium ion in co-incidence with a
two-electron signal in the ROl would yield a
background free experiment

136Xe — 136Bg2* +2e7 (2.5 MeV)

Light Sensors
EL Region
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Light + Ba Tagging Sensors

High-Pressure Gas

Light Sensors
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Sensitivity Comparisons

* Significant
Improvement in
sensitivity possible with
the introduction of
barium tagging

1028.

Half Life [yr]

* Much greater
improvement than 107
improving other
deteCtor deSIgnS ] == NEXT with barium tagging
including radiopurity 0 5 10 15 30 5

) ) Exposure [ton yr]
and diffusion

Inverted Hierarchy

= NEXT-100 Materials, Pure Xe
= NEXT-HD Materials, Pure Xe
- NEXT-HD Materials, Low Diffusion
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Realizing Barium Tagging

. Several milestones to
realize a barium tagging
system

|

Bring Ba’*to sensor or
sensor to the ion

Sensor with sensitivity to
only single ions of Ba?*

Free up space in detector
plane to incorporate
Sensors

Demonstrating a
functioning system with —
realistic conditions

Allowing for scaling to
large scale detector to
tonne scale and beyond

ﬁ

ﬁ

N
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NEXT is attacking all these
challenges on multiple
fronts

RF carpets for bringing Ba%* to @
sensors in high-pressure gas N
>©

Single molecule fluorescent
imaging for single ion detection

High-speed VUV image
intensified CCD cameras for large -
area tracking

Underground phase with HPGTPC
demonstrator system @a’&m
Integrated barium tagging ‘
sensors |

See backups for more info!

K Mistry 2/
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Single Molecule Fluorescent Imaging (SMFI)

A non-fluorescent molecule becomes
fluorescent (or vice versa) upon the
introduction of a ion species such as barium

18c6-nap
ek
Oﬂ-state[o 0j
B i O
—
Not-Fluorescent D
quenching Single molecule Ba?* Imaging
o._N_Jo
" Phys. Rev. Lett. 120 (2018) 13, 132504;
ACS Sens. 6 (2021) 1, 192202;
300
excitation [Ba**]/mM
HN .
Add Ba?* " — 00
250 1 — 44
4L¢ Ba2* —— 88
On-stat % 200 - —_—r
n-sael/\Q/\ 8 00 — 40.0
o.,\_'z_,,o = — 88.0
[o..sf \Oj %150{ £ 132.0
e w
Fluorescent! _SA 2 | &
= | ®-0
Lot 31001 & »
: : o 05N, 0
Single-ion sensitivity! il 50 1
=] . :
excitatiorﬁ{wg}f g (/ g 0 ____.J ) - ' \“.‘ﬁ.» .
HN-R 300 350 400 450 500 550 600
Emission (nm)
Dry-phase-sensor D.R. Nygren, J.Phys.Conf.Ser. 650 (2015) no.1, 012002
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Additional Variants of Chemosensors mf

. . i\ FBI x 310
Molecule with barium wo| | {Bi-cotor — rares
has different optical
properties compared Bi_colour :
to without ) § >
~ Colour shifts
-+ Fluorescent to ol 4
300 400 500 600 700
phosphorescent 0 > (om)
AYS Nature 583 (2020) 7814, 48-54
: Ba*t LEs0a ACN 1E-5M EPL375, TCSPC, 200 KHz
il | PHOSPHORESCENT o
| 1 Backaround-ree emission
Ea.hos : frele :
Fl uoresce nt — é - FLUORFE;E LE+02 4
Phosphorescent o
0.£+00 T . : : . LEiD = = free

3 fnm) time (ns)
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Ba tagging demonstrator phases ¢

Demonstrator phases under intensive development under 2-3 yr time-scale

Sensor to lon Concept Detector (10
‘.";'. { ‘k.e_ a_: . . .
o | e ¢ Bring the sensor to the single-ion
. g  location
CCD %
E
Cathode (0V) EL (+HV)

lon to Sensor (NEXT-CRAB) Concept JinsT 18 (2023) posoos

* High speed cameras for optical tracking 2 Siogle 4™ lon tagglng w/SMFI
o
We are currently scaling e
th|S teCh nO|Ogy and a 1. Direct VUV camera tracking E ; ’%9"%"9 o
future underground i,,."‘H : '. : : el e
. iid » > § 3. RF Carpet ion transport in xenon gas

phase on the horizon 3’7 1]’z # / — — ot K
wh|§h will prepare for BENEFS : = Pl Sobaboboboboboboboboboly
the incorporation of Ba?* |3 H‘ = ' o L rrrre——————

. k1 <& =1 = arium-Tag = 000 | E ’ ‘ i
ta gg N g GEANTA MC *"SIMION simulation

JINST 15 (2020) 04, P04022
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Summary \

* The NEXT experiment is a high-pressure xenon TPC searching for
Ov[3 decay with a phased program

 NEXT-100 experiment is in the final stages of construction and will
begin commissioning in the beginning of 2024 for a first
competitive search

e Subsequent phases at the tonne scale are under intensive
development and aim to enter the inverted hierarchy region with
improved background indexes and detector hardware

e Barium tagging R&D program is making significant progress with
RF carpets, single ion sensitive compounds, tracking with high-
speed cameras with a future small-scale phase on the horizon the
demonstrate the technology in realistic conditions
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[on Transport with RF Carpets S

* Once barium ion arrives in the sensor region plane, we have two
options:
-~ Transport the ion to the sensor
-+ Bring the sensor to the ion

* RF carpets with small pitches ~100um are being developed for
use in high-pressure gas environments to bring ion to sensor

0.200 = P »
0.175 : ‘ Several
0.150 - ] e manufacturing
methods and
0.125 - .
parameters being
£ 005 investigated:
> 0.075 - "A10 -3.09 -3.08R(cm)- _ Pltch
0.050 1 - Shape + Size
- Frequency of
0.025 A .
potential
0.000 Fressercossssanscsassscnscssonsssensasaassssesssssssassasarssssssnans ~ Voltage
-6 -5 -4 —l3 -2 -1 0 i

R (cm)
JINST 15 (2020) 04, P04022
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“Meadow” Sensor Design S

BaZ* lon Capture -
Molecule lon Mobility
Molecule
") : /
. A. ion mgbility in solid electrol ﬂc B.selective
The ideal sensor J el R
-® oﬂ:‘on ‘ { \
-~ Self-assembled monolayer @ . @ 9| g
interface between substrate ‘ , !Nk ‘1& A
and receptors \,z <4 {4 — 2
+  Receptors close (but not too Self-Assembled St SEJ;
close) together Monolayer A
- Barium lons survive in 2+ N
state while mobile on the D b
electrolyte surface : i Y, \
((,e (Che (. (8. (e Kls W
5 9 o 2-6 2-6 2-6 2-6
~  High efficiency and low
background RO-Si-OR RO-Si-OR RO-Si-OR RO-Si-OR RO-Si-OR RO-Si-OR RO-Si-OR
Q Q 0 O 0 0 O
i | | E.glasssubstrate | | l I /’

L | g

Glass Substrate
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High Pressure Microscope S

* \We have developed a custom single-molecule sensitive
microscope suitable for high-pressure xenon gas

g8 8
E = 3 § 5
= =
: 2 - - G o
: 5
\ @ : . g . o 5
-~ 5 < 6, ae -
] K % Yocy, z = ® S
: agsnm Lo - f;}/e"'o be’/aa RO % nw O p— o 3 o 3
line filter. " 69, e ey 2 0 Q = 8 3 g
a T = 3 8- P '“-" g 2
:2: g g‘ 8 ._'.‘, 3 c &: Q B
a = o o g ) =3 @,
: : e %7 Y @ ® S
2 7 Filter cube 500nm SP \ N " I : l
i § detail: v 1 1 : : ! !
° 1 =
* = ] camera 500nm LP
(7 R
852 |- b
= um
2 3 8 - 2 0D4 neutral v
A density filter 30(':1nm LP
ichroic

Microscope has a 5x5mm? scan area with
1x1mm? scan area demonstrated at

pressure
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Microscope scanning and focus

Scanning a mm? in with single
molecule sensitivity and Point
Spread Function at the Abbe
limit in high pressure xenon

1mm

— 30000

A. Back of slide B. Out of focus

A novel single molecule
autofocus method has
been developed

r 25000

r 20000

C. 1.3 ym from focus D. In focus 15000

Maintains the focal plane | & B
with 1um precision across 0-
1mm, at 150um working

distance

10000

5000

-200 -150 -100 -50 0 50 100 150
Distance from focus (micron)
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Characterizing the sensors mstisros o
E Demonstrating capture % , )

and fluorescence
requires a controlled Ba%*
beam in xenon gas

- Not triviall

1 .
1™

204

* We have developed a [ T I
tuneable metal ion beam :
in a bench-top sized
system i B

e Controllable currents -
with ion charge ' |
selectivity in the picoamp .| | MA_M
range : ; S
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VvBIT: Integrated Barium Sensors nj

DC focusing ring
electrode

e Package RF electronics
and SMF|
chemosensorsintoa . F
single integrated chip 7"
~  Current electrode e
designs have mongyer
achieved a 10um
pitch which is
suitable for 10 bar
operation

RF carpet, 10pum pitch:

* Integrated light-guides

-~ Similar to technigues
employed in trapped
ion qubits

* Tile the readout plane
with these chips
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