

Sub-GeV dark matter searches with SENSEI

Nate Saffold, for the SENSEI collaboration International Workshop on Double Beta Decay and Underground Science 23 (DBD23) 12/3/2023

The SENSEI collaboration

Fermilab: A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner, J. Estrada, G. Fernandez Moroni, N. Saffold, M. Sofo Haro, L. Stefanazzi, K. Stifter, J. Tiffenberg, S. Uemura

Stony Brook: P. Adari, R. Essig, A. Singal, Y. Wu

Tel Aviv: L. Barak, M. Daal, E. Etzion, Y. Korn, A. Orly, T. Volansky

U. Oregon: A. Desai, T.-T. Yu

Buenos Aires: S. Perez, D. Rodrigues

U.C. Berkeley: I. M. Bloch

SNOLAB: I. Lawson, S. Luoma, S. Scorza

LBNL: S. Holland

2

Fully funded by Heising-Simons Foundation + R&D support from Fermilab

BERKELEY L

EISING-SIMON

🚰 Fermilab

Fermilab

The Dark Matter Landscape

Potential DM masses span many orders of magnitude Have to choose where to look!

3

Dark Matter-Nucleon Parameter Space

DM-nucleus scattering heavily constrained in the traditional WIMP mass range

4

©∕ensei

Dark Matter-Electron Parameter Space

DM-electron interactions allow us to cast a wider net in the search for dark matter!

5

Probing Sub-GeV Dark Matter

- Energy deposited in target material (recoil energy) scales with DM mass
- For a given DM mass, **electron recoils** deposit more energy than nuclear recoils
- Need detectors with a low energy threshold to search for sub-GeV DM

Schematic of DM-electron scattering arXiv:1509.01598

The SENSEI* experiment

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

The SENSEI* experiment

*Sub-Electron-Noise Skipper-CCD Experimental Instrument

DM

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

pixel charge, reducing noise to sub-electron levels

CCE

pixel

The SENSEI* experiment

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10⁻⁴ e⁻/pix/day)
- Sub-electron (~0.1e⁻) readout noise

Low threshold enables low-mass searches:

- Electron scattering of 1-1000 MeV DM
- Nuclear scattering of 1-1000 MeV DM via Migdal effect
- Absorption of 1-1000 eV DM
- Scattering of milli-charged particles
- Etc...

History of SENSEI results

SENSEI in JAHEP High Energy News

 Thanks to Sho Uemura, SENSEI overview and 2020 dark matter result is presented in JAHEP High Energy News (Vol. 41, No. 1 2022/04.05.06)

ライトダークマターを探る SENSEI

Fermi National Accelerator Laboratory

上村 翔 suemura@fnal.gov

2022年(令和4年)2月23日

1 はじめに

10年前の話では、ダークマターの正体を粒子と思えば 第一候補は WIMP ダークマターだったであろう。現在 では、WIMP 以外のダークマター理論が徐々に有力視 されている。WIMP 検出実験が大規模化するうち、ア クシオンやライトダークマターの探索に興味が増す時代 である。

ライトダークマターとは1 GeV より質量の小さいダー クマター粒子を指す。ライトダークマター理論は一般的 にダークセクターにもとづく。つまり、ライトダークマ ターは標準模型以外のゲージ相互作用(ダークフォトン など)を感じる。あるいは、ダークフォトンなどのゲー ジボソンがダークマター粒子かも知れない。ライトダー クマター粒子は質量が小さいので、数密度が高いであろ う。従って、比較的小規模の検出器でも良い感度が可能 である。

WIMP 探索は原子核反跳を用いるが, ライトダーク マター探索は主にライトダークマターの電子反跳を探 す。その理由はキネマティクスである。ライトダークマ

図 1: CCD 検出器の原理。CCD のシリコンはダークマ ター粒子の電子反跳エネルギーを電子-ホールペアに変 換する。そのホールはバイアス電圧によって CCD の表 面のピクセルに引き込まれて,のち読み出される。

2 Skipper-CCD

CCD はイメージセンサーとして長らく利用されてい るが, SLAC の SLD バーテックス検出器 (VXD) など, 素粒子物理学でも活躍の歴史がある。基本的に, CCD はフォトダイオードの表面の酸化膜上に電極を設け,多 数の MOS キャパシタに分割したものである。これらの

Current status: two science-capable SENSEI setups

SENSEI@MINOS

One CCD module installed in copper cryostat

SENSEI@SNOLAB

Up to 48 CCDs installed in copper cryostat

Will show results from *both* detectors today

SENSEI@MINOS

One CCD module installed in copper cryostat: ~1.925 g, operated at 135 K

Shielding: inner and outer layers of lead shielding, underground site at FNAL in MINOS cavern (~107 m)

Intersects with NuMI beamline

Milli-charged particle (mCP) search in SENSEI@MINOS

Using production rates accepted by SENSEI@MINOS...

Milli-charged particle (mCP) search in SENSEI@MINOS

sei

SENSEI@SNOLAB setup

Each CCD is 6144 x 1024 pixels (15 µm pitch) and 675 µm thick

nsei

SENSEI@SNOLAB setup

Two layers of copper shielding

Three inches of lead shielding

42 inches of polyethylene and water shielding

SENSEI@SNOLAB first science run

- Six CCDs (~13 g) used for first science run
- Installation: 4-7/2021
- Commissioning: 10/2021-8/2022
- Science: 9/2022-4/2023

Many thanks to the SNOLAB staff for their support!!

Fully assembled and shielded SENSEI@SNOLAB

CCDs are operating well!

20 hour exposures: 129 images, no binning, ~50% hidden for bias mitigation

300 Skipper samples \rightarrow 7.3 hours readout, noise of ~0.14 e⁻

3 hour "clear" following each image to sweep charge from active area

Temperature variations of **135 K-155 K** due to failing cryocooler

- 1 e⁻ density (after cuts): ~2 x 10⁻⁴ e⁻/pixel
- No dark rate measurement performed

Cluster reconstruction + selection

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels $\geq 1 e^{-1}$
- 3. Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies (CTI, size varies by charge)
 - Region surrounding any ≥1e⁻ pixels (size varies by charge)
- 4. Remove clusters with any pixels overlapping a mask
- 5. Remove individual high-background cluster shapes

Cluster reconstruction + selection

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels $\geq 1 e^{-1}$
- 3. Apply masks to images to remove:
 - Electronic noise
 - Cross-talk
 - Edges of CCDs
 - Bad pixels and columns
 - Serial register events
 - Charge transfer inefficiencies (CTI, size varies by charge)
 - Region surrounding any ≥1e⁻ pixels (size varies by charge)
- 4. Remove clusters with any pixels overlapping a mask
- 5. Remove individual high-background cluster shapes

Dark matter-electron scattering limit setting

Signal model: generate expected DM events per electron channel using QEdark (upper right) and other calculations given astrophysical parameters from <u>PhystatDM</u> and ionization model (lower right)

Bin by shape: split each electron channel into bins based on number of pixels and/or shape of cluster

Exposure: determine effective exposure for each bin using Monte Carlo simulation given actual masks and charge diffusion parameters measured in SENSEI@MINOS

Backgrounds: calculate expected coincidence background in each bin given measured 1e⁻ density

Limit: Determine a combined likelihood over all bins to set 90% C.L. upper limits in cross section-DM mass parameter space

First SENSEI@SNOLAB results: DM-electron scattering

First SENSEI@SNOLAB results: DM-electron scattering

Exposure: combined datasets amount 10^{-33} to ~70 g-days per electron channel with $\boxed{\underbrace{5}_{10^{-34}}}_{10^{-35}}$ current masks

Three limits: hidden dataset, commissioning dataset, and combined commissioning + hidden exposure

Paper in preparation to present full results

🚰 Fermilab

First SENSEI@SNOLAB results

SENSEI@SNOLAB exclusion limits on dark matter interacting with electrons

SENSEI@SNOLAB: Current Status

Ended Science Run 1 in April 2023

Performed hardware intervention at SNOLAB to:

- Repair cryocooler
- Install additional CCDs
- Improve noise environment

Hardware intervention was successful, Science Run 2 is underway!

Results of Science Run 1 to appear soon

Pursuing additional measurements and analyses with SNOLAB and MINOS data:

- 1 e⁻ studies
- Alternate interactions, including Migdal, absorption, solar reflection, etc.
- Alternate signatures, including daily modulation

Many hands make light work...

Thanks to my collaborators for all their hard work to help us reach this milestone!

More to come from skipper-CCDs...

Next-generation skipper-CCD experiments are in development!

More to come from skipper-CCDs...

From SENSEI to Oscura: scaling up mass

Multi Chip Module (MCM): 16 skipper-CCDs

Super Module: 16 MCMs (125 g)

SENSEI:

- 50 CCDs, 200 channels
- One LTA board per CCD

arXiv:2210.16418

Multiplexing schematic

arXiv:2004.07599

Low Threshold Acquisition (LTA) electronics

- 24,000 CCDs, 24,000 channels
- One LTA board per 4000 CCDs

A lot of progress has been made to develop sensors and readout electronics! See <u>Brenda Cervantes's UCLA DM 2023 talk</u> for more details

Oscura:

Conclusions

- The SENSEI collaboration has two detectors utilizing Si Skipper-CCDs to perform world-leading science:
 - SENSEI@MINOS has set new, world-leading limits on milli-charged particles around 100 MeV
 - SENSEI@SNOLAB has ended its first science run, and set world-leading limits on sub-GeV dark matter interacting with electrons
- Many more exciting results to come, paving the way for the next generation of CCD experiments

<u>姜子,并為其名為。</u>

A DEC STATE STATE STATE

Thank you!

