

TESSERACT: dark matter detection with transition edge sensors and multiple targets

Xinran Li Physics department, Lawrence Berkeley Laboratory The TESSERACT collaboration

> 12/03/2022 DBD23, Waikoloa Village, Hawaii

The TESSERACT project Recent progress Coming up next Direct search for low-mass Dark matter search with a Two-channel devices Second helium detector for dark matter 10g, 10eV threshold silicon • Transition Edge Sensors calibration detector (TESs) with Sub-EV ~1eV threshold detector Underground experiment •

- **Resolution And Cryogenic** Targets
- Polar crystal -- SPICE
- Superfluid helium -- HeRALD

- Low energy excess events
- Low Tc, low stress films
- Proof-of-principle HeRALD • detector operation
- preparation

The TESSERACT project

Low threshold

Target with light element

Polar crystal: optical phonons, dark photon coupling.

Low threshold

Target with light element

Polar crystal: optical phonons, dark photon coupling.

→ Develop a low-threshold (sub-eV) sensor for multiple cryogenic targets: TES based athermal phonon sensors!

TESSERACT & Athermal phonon sensor

TESSERACT & Athermal phonon sensor

TESSERACT: SPICE

Use polar crystals as targets.

- Al₂O₃
- GaAs

GaAs is also a great cryogenic scintillator, can use photons to do background discrimination.

Currently use silicon substrate for fast R&D:

- Tune TES film Tc to achieve sub-eV energy threshold. 55mK Tc \rightarrow 20mK Tc
- Understand noise and background.

GaAs and $\mathrm{Al_2O_3}$ R&D in parallel.

TESSERACT: HeRALD

Use superfluid helium as target. Use silicon photon detector as sensor.

- 16eV scintillation photon
- Quantum evaporation from rotons and phonons

Currently focus on understanding the detector response

- Roton detection efficiency
- Quantum evaporation gain
- Superfluid helium response

Recent progress

Dark matter search with 10g, 10eV threshold Si detector

10-26

 10^{-28}

Same detector for the HeRALD readout.

Large spectrum: Energy region of interest Inset: High energy region with 1.48keV Al k-alpha calibration peak Preliminary limit on nuclear recoil dark matter. Low-energy reach competes with Migdal effects.

Dark matter search with 10g, 10eV threshold Si detector

Same detector for the HeRALD readout

Large spectrum: Energy region of interest Inset: High energy region with 1.48keV Al k-alpha calibration peak Preliminary limit on nuclear recoil dark matter. Low-energy reach competes with Migdal effects.

~1eV threshold detector

Reduce target mass. Reduce surface coverage.

1cm² 1mm thick silicon detectors.

Free-hanging from wire bonds to reduce stress. SPICE 1%: ~273 meV (sigma) energy resolution in phonon system SPICE 0.25%: ~460 meV (sigma) energy resolution in phonon system

CPAD Talk 2023 (stanford.edu)

~1eV threshold detector

Reduce target mass. Reduce surface coverage.

1cm² 1mm thick silicon detectors.

Free-hanging from wire bonds to reduce stress. SPICE 1%: ~273 meV (sigma) energy resolution in phonon system SPICE 0.25%: ~460 meV (sigma) energy resolution in phonon system **Energy calibrated with** optical photons! 450nm and 405nm

CPAD Talk 2023 (stanford.edu)

450 nm Fi

405 nm Fi

405 000

Low energy excess events

Stress related low energy events.

High stress mounting introduce higher rate. Rate decays exponentially with cold time. Events of same spectrum and decay observed in many experiments. Non-ionizing.

 \rightarrow Hanging device + low stress film.

 10^{-4} 10^{-5} 20 120 40 100 60 80 Energy absorbed in TES (eV) 10¹ High Stress, 3 eV to 38 eV rate Low Stress, 3 eV to 38 eV rate 100 High Stress, 85 eV + rate Rate in Bin (Hz) 1-01 Low Stress, 85 eV + rate High Stress, 38 eV to 85 eV rate Low Stress, 38 eV to 85 eV rate 10^{-2} 10^{-3} 60 80 100 120 140 arxiv:2208.02790 Time After Cooldown (Hours)

Glue

Stress

High Stress

Low Stress

85+ eV Bin

140

- Corre TTT.

160

Saturation

3-38 eV Bin 38-85 eV Bin

10²

10¹

100

Counts/(eV s) 10⁻¹

10-3

Low energy excess events

Stress related low energy events.

High stress mounting introduce higher rate. Rate decays exponentially with cold time. Events of same spectrum and decay observed in many experiments. Non-ionizing.

 \rightarrow Hanging device + low stress film.

The low coverage device's energy resolution improves over time as the LEE rate decreases!

The LEE spectrum extends to below threshold.

e (W/rt(Hz))

The LEE also prevent us reaching the • theoretical energy resolution.

Low stress low Tc films

First attempt with tungsten film. Low Tc achieved. Not low stress. Good results from Ir/Pt bilayer samples from Argonne National Laboratory.

TES fabrication finished. Tests on going!

Proof-of-principle HeRALD detector operation

Cs superfluid helium stoper demonstrated. Photon and quantum evaporation signals observed. 145eV energy threshold.

Ready to explore very interesting helium physics!

arxiv: 2307.11877

Proof-of-principle HeRALD detector operation

Cs superfluid helium stoper demonstrated.

Photon and quantum evaporation signals observed. 145eV energy threshold.

Ready to explore very interesting helium physics!

Clear discrimination between electron recoil and nuclear recoil.

Coming up next

Two channel devices

Path to LEE background rejection

Helium readout with split CPD

Two TES channels on one silicon substrate Need to improve triggering algorithm

Second HeRALD detector at LBL

- Improved design for better Cs deposition.
- 2 by 2 readout arrays on top and bottom.
- Helium electron recoil and neutron recoil calibration.
- Quantum evaporation efficiency and gain calibration.

Photos for reference

BUI Tuan Khai

From https://www2.kek.jp/gup/en/member/

Maurice

Garcia-Sciveres

Koji Ishidoshiro

Suerfu Burkhant

uerfu-at-nost

OUP Deputy Principal

Kaori Hattori

OUP Principal Investig Research Institut

Underground experiment preparation

Underground labs

US - SURF Space ready in 2025 Planning for 2 payloads

France - Modane - LSM Project presented to French community since Oct 2022. Planning for 1~2 payloads.

UP Principal Investigator Associate Professor KEK, IPNS Institution me Hel.in Japan - Kamioka Commissioning: ~mid 2024. Science payload: ~10g-yr exposure ~20eV threshold.

Existing

To be adde

Underground experiment preparation

Low background environment

1 DRU shielding

Simulation + engineering design

Zero vibration cooling

EMI/RF/IR shielding

Parasitic noise power from EMI/RF/IR is the limiting factor to go to lower energy threshold.

- Improve fridge RF tightness.
- Improve detector holder IR tightness.
- Filter EMI/RF/IR from TES bias.

Conclusion

- TESSERACT has a strong collaboration and we are building up momentum.
- The goal is to explore the large parameter space from 1GeV to 1keV dark matter mass with various target materials.
- 10g, 10eV silicon device obtained world-leading results.
- Results from ~1eV threshold device on the way.
- Successfully demonstrated superfluid helium detector with film stopper and quantum evaporation signals. Next iteration detector will be ready soon.
- Reduce background:
 - Reduce film stress.
 - Reject single events in two-channel devices.
- Simulation and engineering design for underground experiments goes in parallel.

Thank you! Questions?

Back up

HeRALD detector concept and helium response

Phys. Rev. D 100, 092007 (2019)

HeRALD detector quantum evaporation

Phys. Rev. D 100, 092007 (2019)

Athermal phonon sensor energy resolution

TES noise is limited by the thermal fluctuation noise of the thermal link G between the TES and the bath.

$$\sigma_E \sim \frac{\sqrt{4k_b T_c^2 G(\tau_{collect} + \tau_{sensor})}}{\epsilon_{collect} \epsilon_{sensor}}$$

Thermal phonon TES sensor: $\tau \sim C_{detector}/G \rightarrow \sigma_E \sim T_c^{3/2}$

Athermal phonon sensor: Thanks to extra freedoms from the phonon collection fins, τ_{collect} can be engineered to match τ_{sensor} (the time scale of electrical-thermal feedback) $\rightarrow \sigma_{E} \sim T_{c}^{3}$

- Lower Tc
- Optimization of phonon and quasiparticle collection efficiency.

LEE event spectra from various experiments.

Xinran Li, DBD23, Waikoloa Village, Hawaii | BERKELEY LAB

arxiv: 2202.05097

Multi-phonon creation in crystals

Gains additional sensitivity at sub-eV

Multi-phonon creation in crystals

34

CPDv2 design

TES length	140 µm
TES Thickness	40 nm
TES width	2.5 µm
n _{fin}	6
Fin Length	150 µm
Fin Thickness	600 nm
Al/W Overlap	20 µm
N _{qet}	673
Active Surface Area	0.68%
Passive Surface Area	0.18%
R _n	200 mΩ
QP Abs Efficiency	52%
Tot Efficiency	18% (Simulated)