Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato

T. Sato Osaka U

Report on new results from our extended analysis of meson production reactions

Contents

- Coupled channel reaction model of meson production reaction
- Analysis of meson production reaction
- Extraction of resonance parameters
- \checkmark Resonance mass and width
- ✓ Role of reaction dynamics on resonance properties
- > Summary

Extract resonance parameters from meson production reactions

Recent high precision data of meson photo- and electro-production reactions open an opportunity for *quantitative* study of the N* structure.

Feature of N^* , Δ resonances

- large width (~> 100MeV) and overlapping of nucleon resonances
- Unique system to examine interplay among scattering states and 'excited' state

Properties of resonance states can be understood only when the interplay is properly considered

analyze properties of resonances

M1: Magnetic dipole

Note:

Most of the available static hadron models give $G_M(Q^2)$ close to "Bare" form factor.

C2: Coulomb quadrupole

Large deformation from pion cloud

Sato, Lee 96,01

Our approach

- Analysis of meson production reaction with Dynamical Coupled-Channels approach
- Extraction of resonance parameters(Mass, transition form factor) from the partial wave amplitudes

dynamical coupled-channels (DCC) model

Dynamical Coupled Channel Approach

A. Matsuyama, T. Sato, T.-S.H. Lee Phys. Rep. 439 (2007) 193

Start from effective, Hermite Hamiltonian of meson-baryon

Excited baryon(N*,Delta) and meson : mass, decay vertex

- Effective model of QCD
- Phenomenological parameters to be determined from data
 For each N* and Delta, common vertex cutoff for all MB channel

MB scattering states: non-resonant interaction with meson exchange picture

Start from 'chiral Lagrangian' and construct meson-exchange 'potential' Use SU(3) for PBB, VBB vertex except KNS, improve pipi s-wave model.

Scattering amplitude of pion and photon induced meson production amplitudes are given by solving coupled channel LS equation(3-dim reduction) in momentum space

$$T_{\beta,\alpha}(k',k,W) = V_{\beta,\alpha}(k',k) + \sum_{\gamma} \int dq q^2 V_{\beta,\gamma}(k',q) G^0_{\gamma}(q,W) T_{\gamma,\alpha}(q,k,W)$$

Scattering amplitudes satisfy two-body and three-body unitarity

particle exchange interaction $Z^{(E)}$

After manupilation of the formula

Analysis of meson production reactions

New ANL-Osaka Dynamical Coupled-Channels analysis

	(JLMS)	(ANL-Osaka)				
	2006-2009	2010-2013				
channels	6 channels	8 channels				
reactions	(γΝ,πΝ,ηΝ,π∆,ρΝ,σΝ)	(γΝ,πΝ,ηΝ,πΔ,ρΝ,σΝ, <mark>ΚΛ,ΚΣ)</mark>				
✓ πp → πN	W < 2 GeV	< 2.1 GeV				
✓ γ p → π N	< 1.6 GeV	< 2 GeV				
✓ π-p → ηn	< 2 GeV	< 2 GeV				
✓ γ p → η p	_	< 2 GeV				
✓ πp → ΚΛ, ΚΣ	—	< 2.2 GeV				
✓ γp → ΚΛ, ΚΣ	_	< 2.2 GeV				

Extended to include KY production reaction, higher W Fully combined analysis of γN , $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$ reactions omega N, pipi N are not included in fit

Kamano, Nakamura, Lee, Sato, 2013

Data sets

Hadronic processes: from the

 $\pi N \to \pi N$ Amplitudes from SAID analysis Total 1940

Partial Wave		Partial Wave		complication	nina	
S_{11}	65×2	S_{31}	65×2	1		Total 2497
$P_{11} P_{13}$	65×2 61×2	$P_{31} \\ P_{33}$	61×2 65×2		$d\sigma/d\Omega$	Р
$D_{13} \\ D_{15}$	$61{ imes}2$ $61{ imes}2$	$D_{33} \\ D_{35}$	55×2 45×2	$\pi^- p \to \eta p$	294	_
F_{15} F_{17} G_{17} G	48×2 32×2 42×2 28×2	$F_{35} \\ F_{37} \\ G_{37} \\ G$	43×2 44×2 32×2 20×2	$\begin{array}{l} \pi^- p \to K^0 \Lambda \\ \pi^- p \to K^0 \Sigma^0 \\ \pi^+ p \to K^+ \Sigma^+ \end{array}$	587 259 609	354 90 304
G_{19} H_{19}	28×2 34×2	$G_{39} \\ H_{39}$	32×2 31×2	Sum	1749	748
Sum	994		946			

TABLE IV. The number of data points of photoproduction processes included in our fits. The data are from compilation of Bonn-Gatchina.

	$d\sigma/d\Omega$	Σ	Т	P	G	H	E	F	$O_{x'}$	$O_{z'}$	$C_{x'}$	$C_{z'}$	sum
$\gamma p \rightarrow \pi^0 p$	4414	1866	389	607	75	71	140	_	7	7	_	_	7576
$\gamma p \to \pi^+ n$	2475	899	661	252	86	128	231	_	_	_	_	_	4732
$\gamma p \rightarrow \eta p$	780	151	50	_	_	_	_	_	_	_	_	_	981
$\gamma p \rightarrow K^+ \Lambda$	1320	118	66	1336	_	_	_	_	160	159	66	66	3291
$\gamma p \rightarrow K^+ \Sigma^0$	1280	87	_	95	_	_	_	_	_	_	94	94	1650
$\gamma p \to K^0 \Sigma^+$	276	15	_	72	_	_	_	_	_	_	_	_	363
Sum	10545	3136	1166	2362	161	199	371	_	167	166	160	160	18593

2106 Me 🐺

0

90

θ (deg.)

180

$$\pi^+ p \to K^+ + \Sigma^+$$

-1

0

2059 MeV

90

 θ (deg.)

2074 MeV

90

 θ (deg.)

0

Extraction of resonance poles and residues of scattering amplitudes

Extraction of resonance parameters

Spectrum of nucleon resonances (N* and Delta) from the ANL-Osaka coupled channel analysis(2013 model) of meson production reactions Real part of the resonance pole position

N1/2+ N3/2+ N5/2+ N1/2- N3/2- N5/2- Δ 1/2+ Δ 3/2+ Δ 5/2+ Δ 7/2+ Δ 1/2- Δ 3/2- Δ 5/2-

PDG 3*(4)

PDG 4*(7)

resonance properties

≻ P33

≻ P11:

Delta P33 (1232) and second P33

piN amplitude |F| on complex W plane

JLMS (our previous model) Phys. Rev. C76 (2007)065201 B. Julia-Diaz et al.

Julich (dynamical reaction model) arXiv 1211.6998 D. Ronchen et al.

Bonn-Gachina(K-matrix approach) EPJ A(2012)48,15 A.V.Anisovich et al.

GWU/VPI Phys.Rev.C74(2006)045205, R. A. Arndt et al.

Second Delta33

	ANL- Osaka	JLMS	Julich	Bonn- Gachina	GWU/VPI
Mass(MeV)	1734 -176i			1498 – 115i	1457-200i
piN resid.(MeV)	-4 -7i			-11-2.7i	-36+24i
A_1/2(10^-3 Gev-{1/2}	23 +67i			-34+41i	
A_3/2	18 + 135i			-39+11i	

Weak coupling with piN, sizable coupling with gamma N

Pi-N amplitude

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 065203 (2010)

Summary

- We have investigated within a dynamical coupled channel model of piN and gammaN reactions up to 2GeV
- □ The meson baryon channels included in calculations are

 $\gamma N \pi N, \eta N, K\Lambda, K\Sigma \pi \pi N$ ($\pi \Delta, \rho N$ and σN)

- Parameters for non-resonant interaction is mainly constrained by the fit to low energy region W<1.4GeV and N* parameters are determined by the fit up to W<2GeV</p>
- Pole positions and residues(coupling constants of N*) are extracted by analytically continuation of the amplitudes.
- Extracted pole positions are consistent with those listed by PDG, but some differences.

Next step

Continue combined fit including two pion and omega production data to improve fits around W~ 2GeV. combine information from new hyperon photo production data.

- □ Extract transition electromagnetic forms factor for major resonances
- □ Analysis of the nature of resonance poles

Collaborators

- J. Durand (Saclay)
- B. Julia-Diaz (Barcelona)
- H. Kamano (RCNP, JLab)
- T.-S. H. Lee (ANL,JLab)
- A. Matsuyama(Shizuoka)
- S. Nakamura (YITP,Kyoto,JLab)
- B. Saghai (Saclay)
- T. Sato (Osaka)
- C. Smith (Virginia, Jlab)
- N. Suzuki (Osaka)
- K. Tsushima (Adelaide, JLab)

Estimation of resonance amplitude

