Workshop on Neutrino-nucleus interaction in a few GeV region

KEK Tokai Campus November 2017

PION SCATTERING, FINAL STATE INTERACTIONS **(FSI)**, AND SECONDARY INTERACTIONS **(SI)**

ELDER PINZON

YORK UNIVERSITY

Outline

- What are Final State Interactions (FSI) and Secondary Interactions (SI)?
 - What impact do they have on ~GeV neutrino experiments?
- How are these interactions simulated?
 - How have we improved these simulations?
 - DUET Experiment

GeV v Interactions

Reconstructing the v flavour and its energy is fundamental

• For both oscillation and cross section analyses

Elder Pinzon (York U.) – KEK Workshop 2017

GeV v Interactions

 \clubsuit Reconstructing the v flavour and its energy is fundamental

• For both oscillation and cross section analyses

Pions can interact:

- Inside the nucleus:
 - Final State Interactions
- Outside the nucleus: Secondary Interactions

How do these sub-GeV pions interact on nuclei?

Secondary Interactions (SI)

\bigstar Interactions outside the nucleus \rightarrow anywhere in the detectors

Could mean that the pion is not detected or that it is mis-reconstructed

This is a dominant "detector" systematic for the near detector at T2K!

Elder Pinzon (York U.) – KEK Workshop 2017

Final State Interactions (FSI)

- If the pion interacts inside the nucleus it might not even be able to exit!
 - What T2K measures is a combination of FSI and other potential nuclear effects:
 - Fermi momentum of initial nucleon
 - Formation zone effects
 - The actual π production model kinematics
 - Very hard to isolate each effect!

 Hb

 Bobies 212722

 Boan 202.0

 Boan 20

Final State Interactions (FSI)

Combined Analysis of Neutrino and Antineutrino Oscillations at T2K

Phys. Rev. Lett. 118, 151801 (2017)

TABLE II. Systematic uncertainty on the predicted event rate at the far detector.

Source (%)	$ u_{\mu}$	ν_e	$\bar{ u}_{\mu}$	$\bar{\nu}_e$
ND280-unconstrained cross section	0.7	3.0	0.8	3.3
Flux and ND280-constrained cross section	2.8	2.9	3.3	3.2
Super-Kamiokande detector systematics	3.9	2.4	3.3	3.1
Final or secondary hadron interactions	1.5	2.5	2.1	2.5
Total	5.0	5.4	5.2	6.2

MINERvA CCQE nue

J.Wolcott, FERMILAB-THESIS-2015-26

How are FSI/SI simulated?

NEUT, NuWro, GENIE hN, FLUKA, Geant4 use Intra-Nuclear Cascade Models

- Particles are stepped within the nucleus
- At each step within the nuclear radius the mean free path is calculated:
 - $\lambda_{\text{step}}(\mathbf{r}) = [\sigma_{\text{microsopic}}\rho(\mathbf{r})]^{-1}$
 - Using Monte Carlo method decide if interaction takes
 place
 - If not, continue to next step
- A-dependence introduced through $\rho(r)$
 - Three-parameter Fermi model for Oxygen,
 - Two-parameter Fermi model for other nuclei

$$\frac{\rho(r)}{\rho_0} = \frac{1 + w\frac{r^2}{c^2}}{1 + \exp\left(\frac{r-c}{\alpha}\right)}$$

Elder Pinzon (York U.) - KEK Workshop 2017

Oset, Salcedo, et al. model

E. Oset, L.L. Salcedo and D. Strottman, Phys. Lett. **B165** (1985) 13

L.L. Salcedo, E. Oset, M. J.Vicente-Vacas, C. Garcia-Recio, Nucl. Phys. **A484** (1988) 557-592

- Used by NEUT (below 500 MeV/c), NuWro and GENIE hN
- Computational many-body calculation in infinite nuclear matter
 + local density approximation
 - Accounts for ∆(1232) spectral function in the medium

π -N data (SAID) or π -A data directly

Models on the market

* Effective (using interpolations of π-A cross sections directly)

• GENIE hA: used by NOvA and MINERvA

✤ Cascade

- NEUT: Oset et al. + π-n cross sections
- NuWro: Oset et al. + π -n cross sections + formation zone effect
- FLUKA(PEANUT): Oset et al. + π-n cross sections + nuclear thermalizaton effects
- Geant4 (Bertini): π-n cross section + pre-equilibrium and evaporation
- GENIE hN: will use Oset et al.

✤ Transport

• GIBBU: hadronic potentials and the equation of state of nuclear matter within the Boltzmann-Uehling-Uhlenbeck (BUU) theory

Model comparisons (π⁺-¹²C)

Can use data to tune and select models

♦ Large uncertainties and scarce data \rightarrow Need more data!!!

A. Fiorentini, M. Yu

In T2K, we have decided that the physics of FSI and SI are the same to first order

✤ In practice this means:

I. Use the same model to simulate FSI and SI

2. Use π-A scattering to tune this single model and set its uncertainties

DUET

(DUAL USE EXPERIMENT AT TRIUMF)

GOAL: MEASURE $\pi^+\mbox{-}C$ ABSORPTION AND CHARGE EXCHANGE CROSS SECTIONS

Detector setup: DUET

Main Components:

PIAnO: (5 cm)³ scintillating fiber tracker (Full active target) + Nal crystals

CEMBALOS: Miniature Fine Grained Detector

- FGD (NSERC funded) built by Canada
- Scintillating bars + Lead layers

PIAnO

Excellent track and vertex reconstruction and PID thanks to high granularity

Able to separate photons and neutrons using charge multiplicity and overall deposition

Elder Pinzon (York U.) – KEK Workshop 2017

Two DUET publications

Elder Pinzon (York U.) – KEK Workshop 2017

Combined ABS+CX selection using PIAnO

Phys. Rev. C **92**, 035205 (2015)

Event Selection: Data vs. MC comparisons

σ_{tot} [mb] $\rightarrow \pi$ -C (past exp.) ✤ Good agreement of distributions before applying 250 ····· π-C (Geant4 default) - π-H (past exp.) the "no π^+ in final state" cut: 200 π-H (Geant4 default) 150 Large Geant4 mis-modeling of ¹H and ¹²C 100 elastic interactions 50 Beware of Geant4.9.4! 100 200 500 700 800 <u>×10</u>³ ×10³ T₋ [MeV] Number of Events Number of Events **16**⊢ πOT Normalized **πOT** Normalized Data - Data .8 Elastic Elastic 14 1.6 Inelastic Inelastic 12 Absorption Absorption 10 .2F СХ СХ Others Others 8 0.8 0.6 0.4 0.2 3.5 20 40 60 80 100 120 140 160 180 0.5 1.5 2 2.5 3 Reconstructed track Polar Angle [deg] Number of reconstructed tracks

Event Selection: Data vs. MC comparisons

- For 238MeV/c π⁺ data set, the efficiency is 79.8% and the purity is 76.8%.
- ~7000 events selected on each momentum data set after all cuts are applied.

Uncertainties

	Y	(0)	F	2]	K			
U	N	I	۷	Е	R	S	I	Т	É		
U	N	I	v	Е	R	S	I	Т	Y		

	p_{π} at the fiber tracker [MeV				
	201.6	216.6	237.2	265.5	295.1
Systematic errors					
Beam profile	0.9	1.2	1.0	0.6	1.2
Beam momentum	1.6	1.7	0.7	0.8	1.4
Fiducial Volume	1.1	3.9	1.4	1.2	1.3
Charge distribution	2.4	2.2	2.6	2.6	2.9
Crosstalk probability	0.3	0.3	0.3	0.2	0.4
Layer alignment	0.5	0.8	1.1	1.0	1.4
Hit efficiency	0.3	0.3	0.2	0.4	0.3
Muon contamination	0.5	0.8	0.9	0.3	0.2
Target material	0.8	0.9	0.9	0.8	1.0
Physics models (selection efficiency)	2.8	4.9	2.9	4.8	3.7
(background prediction) +	2.8	1.8	2.4	2.3	3.3
_	6.1	3.7	3.6	1.5	1.9
Subtotal +	5.2	7.3	5.2	6.3	6.4
_	7.5	8.0	5.9	6.0	5.8
Statistical error (data)	1.7	3.1	1.7	1.8	1.7
Statistical error (MC)	0.1	0.1	0.1	0.1	0.1
Total +	5.5	8.0	5.5	6.6	6.7
_	7.7	8.6	6.2	6.3	6.1

Dominant systematic error is background estimation.

Error is estimated from Data/MC comparisons of a BG enhanced sample

ABS+CX Cross Section Result

Extracting the CX cross section

Detector setup: DUET

Main Components:

PIAnO: 5 cm³ scintillating fiber tracker (Full active target) + Nal crystals

CEMBALOS: Miniature Fine Grained Detector (FGD from T2K) (Scintillating bars + Lead layers)

CX Event Selection: Using CEMBALOS

- Judicious cuts to remove charged background:
 - QE π scatterings
 - Protons from ABS
- And neutral background
 - Neutrons from ABS
 - Gamma rays from nuclear deexcitation
- ~100 events selected for each momentum setting
 - ~20 for 216.6 MeV/c

Efficiency =Selected CX events
True CX events
$$\approx 6\%$$
Purity =Selected CX events
Total selected events $\approx 87\%$

CX Event Selection: Data vs. MC

- Data event rate clearly higher than Geant4 Monte Carlo
- Indication of mis-modeling of nucleon ejection multiplicity and/or momentum

Selection: AbsCXVetoHitsDiag

CX Modeling

- The kinematics of the outgoing π⁰ is not well known
- Few differential cross section measurements
 - D.Ashery et al., "Inclusive pion single-chargeexchange reactions," Phys. Rev. C, 30(3):946 (1984).
- Large discrepancy among models in the forward region, where CEMBALOS is more sensitive
 - In particular Geant4 shows the largest disagreement

Nucleon ejection (ABS background)

- Very large difference among models for both:
 - # nucleons ejected
 - Kinematics
- NEUT is the only model with some public information on the model:
 - R.Tacik, AIP Conf. Proc. 1405, 229 (2011)
 - Tuned to π-{N,Ar} data
- High purity of CX selection means this effect is not dominant
 - But it still troubling

Selecting the model

Implemented a selection/ rejection efficiency-based algorithm to switch from Geant4 to other models

Large differences at low momentum

Decided to use FLUKA as our nominal model for DUET result

$p_{\pi} [{ m MeV}/c]$	Model	σ_{CX}^{MC} [mb]	$N_{ m CX}^{ m MC}$	$N_{ m BG}^{ m MC}$	σ_{CX} [mb]
	Geant4	36.7	63.3	6.1	58.0
201.6	Fluka	55.5	122.2	6.3	45.3
201.0	NEUT	50.5	83.0	4.5	61.8
	Geant4	37.5	16.5	2.0	41.6
91 <i>6</i> 6	Fluka	59.5	32.5	1.5	34.4
210.0	NEUT	55.7	24.2	1.5	43.5
	Geant4	39.6	80.0	9.7	65.4
027 0	Fluka	61.7	149.4	5.8	56.1
231.2	NEUT	57.5	111.7	6.1	69.8
	Geant4	44.7	88.8	9.6	71.4
265 5	Fluka	62.4	143.5	5.0	63.7
205.5	NEUT	57.9	129.4	6.9	64.8
	Geant4	45.1	122.5	12.7	55.1
00F 1	Fluka	58.5	176.2	5.6	52.0
290.1	NEUT	58.3	170.3	8.4	52.7

YORK UNIVERSITÉ UNIVERSITY

Uncertainties

			CX					ABS		
π^+ Momentum [MeV/c]	201.6	216.6	237.2	265.5	295.1	201.6	216.6	237.2	265.5	295.1
Beam Systematics										
Beam profile	3.5	4.9	6.2	4.2	2.0	2.2	2.7	3.8	2.9	2.5
Beam momentum	4.1	1.6	3.5	4.1	2.8	1.5	2.3	1.9	2.5	3.0
Muon Contamination	0.5	0.8	0.9	0.3	0.2	0.5	0.8	0.9	0.3	0.2
Piavo Systematics										
Fiducial Volume	3.6	2.3	4.3	3.9	4.5	1.1	5.4	4.1	3.8	3.4
Charge distribution	3.3	4.1	3.3	2.4	3.0	4.3	3.2	4.1	4.1	4.4
Crosstalk probability	3.9	4.9	4.4	2.5	2.2	1.9	2.0	2.7	1.7	1.3
Layer alignment	1.3	3.6	2.9	0.9	1.1	1.0	2.3	2.8	1.7	2.4
Hit efficiency	1.0	2.1	2.1	2.5	2.6	1.1	1.3	1.5	2.0	1.0
Target Material	2.0	2.0	2.9	2.9	2.9	1.2	1.2	1.2	1.2	1.3
Harpsichord Systematics										
Harpsichord Charge	1.7	1.6	3.7	3.1	6.7	1.3	1.1	2.0	1.7	2.5
Harpsichord Hit Inefficiency	1.6	2.1	1.1	1.3	2.0	1.2	1.1	1.1	1.0	0.9
Harpsichord Alignment	7.7	7.9	8.3	5.7	4.6	0.7	1.0	0.7	0.7	1.0
Physics Systematics										
Ashery	6.1	6.9	7.9	9.4	10.6	2.1	1.6	3.2	4.3	4.1
Multiple Interactions	1.1	1.9	1.7	1.5	1.8	1.1	1.9	1.7	1.5	1.8
Pion Decay Background	1.9	2.8	1.2	0.6	0.9	1.9	2.8	1.2	0.6	0.9
Statistical error	11.0	26.0	9.4	8.9	8.8	3.9	6.2	3.9	4.2	3.6
Total error	17.9	30.3	19.4	17.0	18.0	8.0	11.0	10.5	9.8	9.8

ABS, CX Cross Section Result (2017)

Phys. Rev. C **95**, 045203 (2017)

Similarly sized error bars, but extended coverage in Δ region

Covariance Matrix:

Important for Fitting Models to Data

TUNING THE NEUT CASCADE MODEL

WITH HELP AND GUIDANCE FROM:

T. FEUSELS, A. FIORENTINI

T2K NIWG CONVENERS: S. BOLOGNESI, Y. HAYATO, K. MCFARLAND, C. WILKINSON

Goal:

Global fit to pion-nucleus scattering data

- Using ad-hoc parameters in the NEUT cascade model that scale the microscopic scaling cross sections at each step
 - Only controls the fate of the pion (not the kinematics)

The π-A macroscopic cross sections (σ^{NEUT}) depend on f_{FSI}

 $\lambda_{\text{step}}(\mathbf{r}) = \mathbf{f}_{\text{FSI}} [\sigma_{\text{microscopic}} \rho(\mathbf{r})]^{-1}$

Parameter f_{FSI}	Description	p_{π} Region (MeV/c)
FEFABS	Absorption	< 500
FEFQE	Quasi-elastic scatter	< 500
FEFCX	Single charge exchange	< 500
FEFQEH	Quasi-elastic scatter	> 400
FEFINEL	Hadron (N+n π) production	> 400

*These same parameters are used in T2K analysis to propagate FSI and SI errors

Elder Pinzon (York U.) - KEK Workshop 2017

Summary of π -A scattering data

- Total (integrated) and inclusive cross section data
- Light and heavy nuclei:
 - Carbon, oxygen, aluminum
 - Iron, copper, lead
- Five channels:
 - Quasi-elastic (QE)
 - Absorption(ABS)
 - Charge exchange (CX)
 - ABS+CX
 - Reactive: QE+ABS+CX+ Double CX + Hadron Production
- From ~100 to 2000 MeV/c

Data spani	ning	five	decades!
------------	------	------	----------

Reference	Polarity	Targets	$p_{\pi} [\text{MeV}/c]$	Channel(s)
B. W. Allardyce et al. [11]	π^{\pm}	C, Al, Pb	710-2000	REAC
A. Saunders et al. [12]	π^{\pm}	C, Al	116 - 149	REAC
C. J. Gelderloos et al. [13]	π^{-}	C, Al, Cu, Pb	531 - 615	REAC
F. Binon et al. [14]	π^{-}	\mathbf{C}	219 - 395	REAC
O. Meirav et al. [15]	π^+	С, О	128 - 169	REAC
C. H. Q. Ingram [16]	π^+	0	211 - 353	\mathbf{QE}
S. M. Levenson et al. [17]	π^+	\mathbf{C}	194 - 416	QE
M. K. Jones et al. [18]	π^+	C, Pb	363 - 624	QE, CX
D. Ashery et al. [19]	π^{\pm}	C, Al, Fe	175 - 432	QE, ABS+CX
H. Hilscher et al. [20]	π^{-}	\mathbf{C}	156	$\mathbf{C}\mathbf{X}$
T. J. Bowles [21]	π^{\pm}	0	128 - 194	$\mathbf{C}\mathbf{X}$
D. Ashery et al. [22]	π^{\pm}	C, O, Pb	265	$\mathbf{C}\mathbf{X}$
K. Nakai et al. [23]	π^{\pm}	Al, Cu	83-395	ABS
E. Bellotti et al. [24]	π^+	C	230	ABS
E. Bellotti et al. [25]	π^+	\mathbf{C}	230	ABS
I. Navon et al. [26]	π^+	C, Fe	128	ABS+CX
R. H. Miller et al. [27]	π^{-}	C, Pb	254	ABS+CX
E. S. Pinzon Guerra et al. [28]	π^+	\mathbf{C}	206 - 295	ABS, CX

Table 2: Summary of π^{\pm} -Nucleus scattering data used for this tuning, including beam polarity, nuclear target type(s), momentum range and interaction channel(s). Note that some of this experiments might have measured data on other target nuclei.

Fit description

Minimize the following chi-square

$$\chi^2 = \sum_{i}^{\text{Datasets}} \sum_{j}^{n_i} \frac{1}{n_i} \left(\frac{\sigma_j^{\text{Data}} - \sigma_j^{\text{NEUT}}(f_{FSI})}{\Delta \sigma_j^{\text{Data}}} \right)^2$$

Fit description

Minimize the following chi-square

$$\chi^2 = \sum_{i}^{\text{Datasets}} \left(\sum_{j}^{n_i} \frac{1}{n_i} \left(\frac{\sigma_j^{\text{Data}} - \lambda_i^{-1} \sigma_j^{\text{NEUT}}(f_{FSI})}{\Delta \sigma_j^{\text{Data}}} \right)^2 + \left(\frac{\lambda_i - 1}{\epsilon} \right)^2 \right)$$

Fit description

Minimize the following chi-square

$$\chi^{2} = \sum_{i}^{\text{Datasets}} \left(\sum_{j}^{n_{i}} \frac{1}{n_{i}} \left(\frac{\sigma_{j}^{\text{Data}} - \lambda_{i}^{-1} \sigma_{j}^{\text{NEUT}}(f_{FSI})}{\Delta \sigma_{j}^{\text{Data}}} \right)^{2} + \left(\frac{\lambda_{i} - 1}{\epsilon} \right)^{2} \right) + \sum_{i,j}^{10} \left(\sigma_{i}^{\text{DUET}} - \sigma_{i}^{\text{NEUT}}(f_{FSI}) \right) (V_{ij}^{-1})^{\text{DUET}} \left(\sigma_{j}^{\text{DUET}} - \sigma_{j}^{\text{NEUT}}(f_{FSI}) \right)$$

- An additional overall scaling factor was introduced to increase the coverage of the external data
- Minuit provides best fit and correlations

Fit result ($\pi^{+}-^{12}{}_{6}C$)

Smaller error bands than previous tuning (includes some error scaling)

Elder Pinzon (York U.) – KEK Workshop 2017

Fit result ($\pi^{+}-^{12}{}_{6}C$) – 0 to 500 MeV/c

Smaller error bands than previous tuning (includes some error scaling)

Elder Pinzon (York U.) – KEK Workshop 2017

Fit result (π^{-12}_{6} C) – Data/MC Ratio

External data appropriately covered by uncertainty band

Fit result (π^+ -²⁷₁₃Al) – Data/MC Ratio

External data appropriately covered by uncertainty band

External data appropriately covered by uncertainty band

Elder Pinzon (York U.) – KEK Workshop 2017

IDEAS FOR THE FUTURE

IMPROVEMENTS TO THE NEUT CASCADE MODEL INVESTIGATE FSI VS. SI?

NEUT Cascade Improvements

YORK UNIVERSITÉ

- \clubsuit Improve π Kinematics and tune to differential data
 - Current f_{FSI} parameters only influence the fate of the pion
- Improve modeling of ABS at low momenta for heavy nuclei
 - GiBUU successfully reproduces this feature by including a Coulomb interaction

FSI vs. SI? Pion photo-production

- Exploring how to investigate difference between FSI and SI
 - Surface interactions and deep in-medium effects
 - Expected to be a second order effect
- - Similar to neutrino scattering in that the pion is produced within the nucleus
- NEUT has a cascade simulation for this process
 - But is not sophisticated. Need input from experts
- See talk on Pion Photo-production by Astrid Hiller

P. de Perio, PhD Thesis, U. of Toronto

Figure 6.10: Default (black) and tuned (red) NEUT predictions for $\frac{d\sigma}{d\Omega}$ of π^+ (top) and π^- (bottom) photoproduction from carbon, as a function of incoming photon energy. Two outgoing angles are considered: $\theta_{\gamma\pi} = 28.4^{\circ}$ (left) and $\theta_{\gamma\pi} = 44.2^{\circ}$ (right). Data points are from [195].

- Final State Interactions (FSI) and Secondary Interactions (SI) are important and difficult sources of systematic uncertainty for GeV neutrino experiments
- **\bigstar** DUET measured π^+ -¹²C ABS and CX cross-sections
 - Phys. Rev. C **95**, 045203 (2017)
- ***** Carried out a global fit to π-A scattering data
 - Will lead to reduced FSI and SI uncertainties in T2K analyses
- Pion photo-production could be a test bench for future improvements of cascade models

BACKUP

π -A as a Probe of Nuclear Structure

- Strong interactions are governed by QCD
 - Structure of atomic nuclei and constituents nucleons are fully described by interactions of quarks and gluons
- Color confinement suggests that interactions between nucleons can be described by colorless particles
 - Effective theories based on interactions of nucleons and mesons can be constructed to describe nuclear structure
- Many papers around the 1980's
 - Both theory and experiment
 - Resurgence in late 2000's
 - Accelerator v experiments!
 - T2K, NoVA, MiniBoone,

Minerva, etc.

Elder Pinzon (York U.) – KEK Workshop 2

Effects of π **FSI/SI**

2. Selections based on Final State Topologies

- T2K Near Detector selection to constrain Oscillation Analysis [PRD 91, 072010 (2015]

Fixing π -A elastic modeling

DUET Collaboration

- A subset of members of the T2K experiment from Japanese and North American institutions *
- Data taken over the summers of 2010~2012 *
- ♦ ~1 million π^+ triggers for five momentum setting

TRIUMF M11 Beam line

- * M11 secondary beam line delivered e, μ , p and π with momentum tunable in the range from 150 MeV/c to 375MeV/c.
- **\clubsuit** Recorded data at 5 π^+ momenta
- Beam PID from Time Of Flight (TOF)
 - ~15 m between production point and Scintillation counter near target.
- Above 225 MeV/c use Cherenkov detector to select pions.

PIAnO Fibers

- I6 horizontal and I6 vertical layers with 32 CH fibers each (1.5mm x 1.5mm x 60cm)
- Read by 16 MAPMTs (from K2K) and digitized by FADCs
- Provides precise tracking and dQ/dx measurements of particles in the final state
- Full Geant4 simulation
 - Includes TiO2 fiber coating and support structure

(Plon detector for Analysis of neutrino Oscillation)

Event Selection: Data vs. MC comparisons

σ_{tot} [mb] $\rightarrow \pi$ -C (past exp.) ✤ Good agreement of distributions before applying 250 ····· π-C (Geant4 default) - π-H (past exp.) the "no π^+ in final state" cut: 200 π-H (Geant4 default) 150 Large Geant4 mis-modeling of ¹H and ¹²C 100 elastic interactions 50 Beware of Geant4.9.4! 100 200 400 500 700 800 <u>×10</u>³ ×10³ T. [MeV] Number of Events Number of Events **16**⊢ πOT Normalized **πOT** Normalized Data - Data .8 Elastic Elastic 14 1.6 Inelastic Inelastic 12 Absorption Absorption 10 .2F СХ СХ Others Others 8 0.8 0.6 0.4 0.2 3.5 20 40 60 80 100 120 140 160 180 0.5 1.5 2 2.5 3 Reconstructed track Polar Angle [deg] Number of reconstructed tracks

Event Selection: Data vs. MC comparisons

- For 238MeV/c π⁺ data set, the efficiency is 79.8% and the purity is 76.8%.
- ~7000 events selected on each momentum data set after all cuts are applied.

Uncertainties

J	ł	(2)	F	2]	K			
U	Ν	I	۷	Е	R	S	T	Т	É		
U	Ν	I	۷	Е	R	S	I	Т	Y		

	p_{π} at the fiber tracker [MeV/c]				
	201.6	216.6	237.2	265.5	295.1
Systematic errors					
Beam profile	0.9	1.2	1.0	0.6	1.2
Beam momentum	1.6	1.7	0.7	0.8	1.4
Fiducial Volume	1.1	3.9	1.4	1.2	1.3
Charge distribution	2.4	2.2	2.6	2.6	2.9
Crosstalk probability	0.3	0.3	0.3	0.2	0.4
Layer alignment	0.5	0.8	1.1	1.0	1.4
Hit efficiency	0.3	0.3	0.2	0.4	0.3
Muon contamination	0.5	0.8	0.9	0.3	0.2
Target material	0.8	0.9	0.9	0.8	1.0
Physics models (selection efficiency)	2.8	4.9	2.9	4.8	3.7
(background prediction) +	2.8	1.8	2.4	2.3	3.3
_	6.1	3.7	3.6	1.5	1.9
Subtotal +	5.2	7.3	5.2	6.3	6.4
_	7.5	8.0	5.9	6.0	5.8
Statistical error (data)	1.7	3.1	1.7	1.8	1.7
Statistical error (MC)	0.1	0.1	0.1	0.1	0.1
Total +	5.5	8.0	5.5	6.6	6.7
_	7.7	8.6	6.2	6.3	6.1

Dominant systematic error is background estimation.

Error is estimated from Data/MC comparisons of a BG enhanced sample

ABS+CX Cross Section Result (2015)

Elder Pinzon (York U.) – KEK Workshop 2017

CEMBALOS

- * 8 horizontal and 8 vertical scintillating layers with 32 polystyrene bars each
 - 1/6 x 1/6 of FGD
- Light from scintillation bar + Wave Length Shifting fibers read out by MPPCs
- ~1.5mm Lead layers interspersed to increase photon conversion
- Also used for FGD reconstruction studies: "Harpsichord"
 - HAdron Reconstruction WHaRpsi Studies In CH On Reduced Detector

CX Event Selection: Using CEMBALOS

 π^+ First two layers π^+ 10^3 10^2 10^2 10^2 10^2 10^2 10^2 10^2

- Charged **pions** and **protons** immediately leave a signal in the scintillating detector
- Photons are neutral, so they must interact before they can be detected
- The first two layers are used as a veto cut in order to remove charged background

CX Event Selection: Neutron Rejection

- Neutrons will also mostly make hits after the first two layers
- Use number of hits and total charge deposited to remove most of background

(~20 for 216.6 MeV/c)

CX Event Selection: Data vs. MC

- Data event rate clearly higher than Geant4 Monte Carlo
- Indication of mis-modeling of nucleon ejection multiplicity and/or momentum

Selection: AbsCXVetoHitsDiag

CX Modeling

- The kinematics of the outgoing π⁰ is not well known
- Few differential cross section measurements
 - D.Ashery et al., "Inclusive pion single-chargeexchange reactions," Phys. Rev. C, 30(3):946 (1984).
- Discrepancy among models is largest in the forward region, where CEMBALOS is more sensitive
 - In particular Geant4 shows the largest disagreement

Nucleon ejection (ABS background)

- Very large difference among models for both:
 - # nucleons ejected
 - Kinematics
- NEUT is the only model with some public information on the model:
 - R.Tacik, AIP Conf. Proc. 1405, 229 (2011)
 - Tuned to π-{N,Ar} data
- High purity of CX selection means this effect is not dominant
 - But it still troubling

(2)

$\sigma_{\text{CX}}, \sigma_{\text{ABS}}$ Extraction

✤ Formulae for calculation are:

$$\sigma_{\rm CX} = \sigma_{\rm CX}^{\rm MC} \times \frac{N_{\rm Data} - N_{\rm BG}^{\rm MC}}{N_{\rm CX}^{\rm MC}} \tag{1}$$

$$\sigma_{\rm ABS} = \sigma_{\rm ABS+CX} - \sigma_{\rm CX}$$

✤ Want to try out other models:

- For each model estimate:
 - I. N_{cx}^{MC} (# of signal events)
 - 2. N_{BG}^{MC} (# of background events)

* One option is to re-write the simulation using each package

• A more general (reasonable) one is:

(2)

$\sigma_{\text{CX}}, \sigma_{\text{ABS}}$ Extraction

✤ Formulae for calculation are:

$$\sigma_{\rm CX} = \sigma_{\rm CX}^{\rm MC} \times \frac{N_{\rm Data} - N_{\rm BG}^{\rm MC}}{N_{\rm CX}^{\rm MC}} \tag{1}$$

$$\sigma_{\rm ABS} = \sigma_{\rm ABS+CX} - \sigma_{\rm CX}$$

✤ Want to try out other models:

- For each model estimate:
 - I. N_{cx}^{MC} (# of signal events)
 - 2. N_{BG}^{MC} (# of background events)

* One option is to re-write the simulation using each package

• A more general (reasonable) one is:

"Efficiencies" Scheme

 π^0 and nucleon kinematics dependant selection efficiencies

 \rightarrow Apply directly to the "model" from generators

* Sample Signal Event

- Signal event will be selected if:
 - π^0 is selected $\rightarrow \epsilon_{sel}(\pi^0)$
 - Ejected proton is NOT misreconstructed in Piano as a pion-like track $\rightarrow \epsilon_{rej}$ (p misreco)
 - Ejected nucleons (proton or neutron) fire the veto cut $\rightarrow \epsilon_{rej}(p/n \text{ fires veto})$

Elder Pinzon (York U.) – I

• Sample Background Event

- Background event will be selected if:
 - Neutron is selected $\rightarrow \epsilon_{sel}(n)$
 - − π^+ is mis-reconstructed as proton → $\epsilon_{rej}(\pi^+ \text{ misreco})$
 - Ejected proton is NOT misreconstructed in Piano as a pion-like track $\rightarrow \epsilon_{rej}(p \text{ misreco})$
 - Ejected nucleons (proton or neutron) or π^+ fire the veto cut $\rightarrow \epsilon_{rej}(\pi^+/p/n)$ fires veto)

Adapted from: M. Wascko, Neutrino Nucleus Cross Section Experiments. Talk presented at PhyStat-Nu 2016

Selection and Rejection Efficiencies

- Binned in true Momentum and Angle of corresponding particle
- Calculated using the full Geant4 DUET simulation

Elder Pinzon (York U.) – KEK Workshop 2017

Example: 201.6 MeV/c

Elder Pinzon (York U.) – KEK Workshop 2017

Applying it

- Large differences at low momentum
- Decided to use FLUKA as our nominal model for DUET result

Scheme can be applied to new models when they become available

$p_{\pi} [{ m MeV}/c]$	Model	σ_{CX}^{MC} [mb]	$N_{\mathrm{CX}}^{\mathrm{MC}}$	$N_{ m BG}^{ m MC}$	σ_{CX} [mb]
	Geant4	36.7	63.3	6.1	58.0
201.6	Fluka	55.5	122.2	6.3	45.3
201.0	NEUT	50.5	83.0	4.5	61.8
	Geant4	37.5	16.5	2.0	41.6
01 <i>C</i> C	Fluka	59.5	32.5	1.5	34.4
210.0	NEUT	55.7	24.2	1.5	43.5
	Geant4	39.6	80.0	9.7	65.4
027 0	Fluka	61.7	149.4	5.8	56.1
237.2	NEUT	57.5	111.7	6.1	69.8
	Geant4	44.7	88.8	9.6	71.4
265.5	Fluka	62.4	143.5	5.0	63.7
	NEUT	57.9	129.4	6.9	64.8
	Geant4	45.1	122.5	12.7	55.1
905 1	Fluka	58.5	176.2	5.6	52.0
290.1	NEUT	58.3	170.3	8.4	52.7

Selection and Rejection Efficiencies

- Binned in true Momentum and Angle of corresponding particle
- Calculated using the full Geant4 DUET simulation

Elder Pinzon (York U.) – KEK Workshop 2017

Example: 201.6 MeV/c

Elder Pinzon (York U.) – KEK Workshop 2017

Applying it

- Large differences at low momentum
- Decided to use FLUKA as our nominal model for DUET result

Scheme can be applied to new models when they become available

TABLE II. Predicted N_{CX}^{MC} , N_{BG}^{MC} and extracted CX cross section σ_{CX} obtained from applying the efficiency scheme to GEANT4, FLUKA, and NEUT model predictions. See text for discussion.

$p_{\pi} (\text{MeV}/c)$	Model	$\sigma_{\rm CX}^{\rm MC}$ (mb)	$N_{\rm CX}^{\rm MC}$	$N_{ m BG}^{ m MC}$	σ _{CX} (mb)
	GEANT4	36.7	63.3	6.1	58.0
201.6	FLUKA	55.5	122.2	6.3	45.3
	NEUT	50.5	83.0	4.5	61.8
	GEANT4	37.5	16.5	2.0	41.6
216.6	FLUKA	59.5	32.5	1.5	34.4
	NEUT	55.7	24.2	1.5	43.5
	GEANT4	39.6	80.0	9.7	65.4
237.2	FLUKA	61.7	149.4	5.8	56.1
	NEUT	57.5	111.7	6.1	69.8
	GEANT4	44.7	88.8	9.6	71.4
265.5	FLUKA	62.4	143.5	5.0	63.7
	NEUT	57.9	129.4	6.9	64.8
	GEANT4	45.1	122.5	12.7	55.1
295.1	FLUKA	58.5	176.2	5.6	52.0
	NEUT	58.3	170.3	8.4	52.7

Uncertainties

TABLE III. Summary of the statistical and systematic uncertainties in percent.

			CX					ABS		
π^+ Momentum (MeV/c)	201.6	216.6	237.2	265.5	295.1	201.6	216.6	237.2	265.5	295.1
Beam systematics										
Beam profile	3.5	4.9	6.2	4.2	2.0	2.2	2.7	3.8	2.9	2.5
Beam momentum	4.1	1.6	3.5	4.1	2.8	1.5	2.3	1.9	2.5	3.0
Muon contamination	0.5	0.8	0.9	0.3	0.2	0.5	0.8	0.9	0.3	0.2
PIAvO systematics										
Fiducial volume	3.6	2.3	4.3	3.9	4.5	1.1	5.4	4.1	3.8	3.4
Charge distribution	3.3	4.1	3.3	2.4	3.0	4.3	3.2	4.1	4.1	4.4
Crosstalk probability	3.9	4.9	4.4	2.5	2.2	1.9	2.0	2.7	1.7	1.3
Layer alignment	1.3	3.6	2.9	0.9	1.1	1.0	2.3	2.8	1.7	2.4
Hit inefficiency	1.0	2.1	2.1	2.5	2.6	1.1	1.3	1.5	2.0	1.0
Target material	2.0	2.0	2.9	2.9	2.9	1.2	1.2	1.2	1.2	1.3
CEMBALOS systematics										
Charge calibration	1.7	1.6	3.7	3.1	6.7	1.3	1.1	2.0	1.7	2.5
Hit inefficiency	1.6	2.1	1.1	1.3	2.0	1.2	1.1	1.1	1.0	0.9
Position and alignment	7.7	7.9	8.3	5.7	4.6	0.7	1.0	0.7	0.7	1.0
Physics systematics										
π^0 kinematics	6.1	6.9	7.9	9.4	10.6	2.1	1.6	3.2	4.3	4.1
Nuclear deexcitation γ background	0.9	0.8	0.7	0.6	0.6	0.4	0.2	0.7	0.3	0.2
Multiple interactions	1.1	1.9	1.7	1.5	1.8	0.5	0.5	0.8	0.7	0.7
Pion decay background	1.9	2.8	1.2	0.6	0.9	0.8	0.7	0.5	0.3	0.3
Statistical error	11.0	26.0	9.4	8.9	8.8	3.9	6.2	3.9	4.2	3.6
Total error	17.9	30.3	19.4	17.0	18.0	7.8	10.5	10.4	9.7	9.6

CX Event Selection: Using Nal Crystals

. Cut

Selection Criteria:

- I. 0 or I 3D Piano tracks
- 2. Nal Hit Energy10 MeV in Nal Crystals
- 3. Reject if Piano track points to Nal Crystal
- π⁰ Angular distribution reweighted to FLUKA
- Confirmed momentum dependence of CX photon angle

M. Ikeda, ICCR

Elder Pinzon (York U.) - KEK Workshop 2017

CX Analysis Systematics

- I. π^+ Beam Systematics
 - Profile and Momentum
 - Muon Contamination
- 2. PIAnO detector systematics
 - Fiducial volume, target material, charge simulation, alignment
- 3. Cembalos Detector Systematics
 - Alignment and charge simulation
- 4. CX Physics Systematics
 - > π^0 kinematics (Using Ashery 1984 data)
 - Selection Background

Estimation procedures inherited from ABS+CX analysis

Cembalos Detector Systematics

- I. Detector Alignment (5~8%)
 - ±5mm shifts of the (x,y,z) position of Cembalos in the Monte Carlo

2. Charge Simulation (3~5%)

- Charge calibration tuning was conducted previously using through going muon sample (peaked around 40 p.e.)
- A stopping proton control sample was developed for higher charger deposition
- Systematic is calculated from 10000 toy MC where charge in event is varied following a Gaussian (μ =1, σ =0.2)
- 3. Hit inefficiency (1~2%)
 - Missing hits in the middle of Cembalos reconstructed tracks are counted and compared between Data/MC
 - Systematic is calculated from 10000 toy MC where hits are randomly deleted following the Data/MC difference

"π entering ND280 tracker" sample

- Select CCIπ events where the π track starts upstream of the ND280 tracker (FGD + TPC)
- Follow their secondary interactions elsewhere
- ✤ ~3000 events in Data (6.1×10²⁰ POT)
- Difficult to convert to a cross-section measurement
 - Studying how to use this sample

Elder Pinzon (York U.) – KEK Workshop 2017

TPC1 pion sample momentum distribution

Tuning fit result

\therefore Compared to previous tuning fit (only used π^+ -C data)

Scaling Parameter	Previous tuning	This work		
QE Scattering (low energy)	1.0 ± 0.41	1.069 ± 0.313		
Absorption	1.1 ± 0.41	1.404 ± 0.432		
Charge Exchange	1.0 ± 0.57	0.697 ± 0.305		
Pion production	1.0 ± 0.5	1.002 ± 1.101		
QE Scattering (high energy)	I.8 ± 0.34	1.824 ± 0.859		
Charge Exchange (high energy)	I.8 ± 0.28	I.8 (Fixed)		

Error scaling

Decided to come up with a simple method to inflate the errors on the FSI parameters

$$\chi^2(f_{FSI}) = \frac{\chi^2(f_{FSI})}{\text{Scaling factor}}$$

The following metric was calculated for each data point and used for comparison:

$$\Psi = \frac{\sigma_{j}^{\text{Bestfit}}(\mathbf{f}_{\text{FSI}}) - \sigma_{j}^{\text{Data}}}{\Delta \sigma_{j}^{\text{Bestfit}}(f_{FSI})}$$

- Choose factor such that this distribution has a width of 1.0
 - Ensures coverage of 66% of the datasets

Elder Pinzon (York U.) – KEK Workshop 2017

Also use NEUT tuning for SI...

See "Constraining pion secondary interaction systematic uncertainties at T2K" (Mitchell Yu, NuINT17 Poster)

- I. Replace Geant4 Bertini model with this tuned NEUT model
- 2. Use a sample of pions in the near detector to further constrain these parameters
- Expect significant (~50%) reduction in uncertainties

σ_{tot} [mb]

300

250

200

150

100

50

100

x6

200

300

(Side note) π-A elastic modeling

Important lesson from DUET:

- Large mis-modeling of ¹H and ¹²C elastic interactions in Geant4.9.X
 - Used by ND280 simulation
 - ✤ FGD is mostly C₈H₈
- * π⁺-H has been fixed by Geant in recent version 4.10.X

FIG. 16. (Color online) Comparison of elastic inclusive cross section between the previous experiments (summarized in Table IV) and the default GEANT4. The cross sections are plotted as a function of pion kinetic energy.

400

500

600

700

800

 T_{π} [MeV]

