Gamma production from neutral-current neutrino-carbon and -oxygen interactions

Makoto Sakuda (Okayama) @ JPARC, 2017.11.19

- 1. Feature of NC γ Production
- 2. NC QE γ Production (a la Ankowski et al., PRL108,'12)
- 3. NC Inelastic γ Production (RCNP E398 Result, New)
- 4. Summary

1. Feature of γ -ray production of NC ν -O (-C) reactions (p4

1) E_v >100MeV: Nucleon knockout (Excitation of residual nucleus).

- > $vO \rightarrow v+p/n+{}^{15}N^{*}/{}^{15}O^{*}$ Ankowski,Benhar,MS et al.*Phys.Rev.Lett.***108**(2012)052505
- > $vC \rightarrow v+p/n+{}^{11}B^{*}/{}^{11}C^{*}$: I comment How different C is from O? ← This talk (1)

2) E_v<100MeV: Inelastic scattering (Giant resonances)

- > $vC,O \rightarrow vC^*,O^* \rightarrow \gamma$: Langanke et al., *Phys.Rev.Lett.***76**(1996).
- > They calculate $vO,C \rightarrow vC^*(15.1 \text{MeV})$ and $O^* \rightarrow \gamma(>5 \text{MeV})$.
- > We (RCNP E398) measure Br(C*,O*→ γ (>1.5MeV) and reevaluate SN rate. ←This talk (2)

T2K NC γ production and Karmen NC γ production

il∔u†i Li Ll ilii

Oxygen and Carbon (Shell Structure)

- You learn a shell model in nuclear physics.
- Naïve Shell structure of <u>16</u>O and <u>12</u>C.

(1) NC QE γ Production ($\nu O \rightarrow \nu + p/n + {^{15}N^*}/{^{15}O^*}$)

- Impulse Approximation with Spectral Function O,C(e,e')
 - Benhar, MS et al., PRD72,053005('05); O(e,e') Ankowski, Benhar, MS: PRD91,033005('15). C(e,e')
- Production of γ-rays (>5MeV) in NC QE is significant (Br~ 40%)

for O). Ankowski, MS et al, PRL 108,052505('12)

• Note:6MeV γ happens in CCQE or even Delta. 1N knockout is the point.

Qualitative Estimate (For Quantitative Estimate, refer to AnkowskiPRL)

- $p_{3/2}$ knockout gives 6-MeV γ , which contributes mainly to γ production.
- Rough Estimate: Br=0.7x(p_{3/2} 4/8*1.0+s_{1/2} 2/8*0.15)=0.38.
 σ(NC νΟ γ)~σ_{NCOE}*0.38
- Note: Spectral Function not only gives (p,E) of a nucleon in O, but also gives a spectroscopic factor of $p_{1/2}$, $p_{3/2}$ and $s_{1/2}$.

P(p,E) for ¹⁶O, O.Benhar et al., PRD72,053005,2005,

S(p,E) : Probability of removing a nucleon of momentum p from ground state leaving the residual nucleus with excitation energy E.

What about Carbon? $vC \rightarrow v+p/n+^{11}B^*/^{11}C^*$

Is vC→v+p/n+¹¹B*/^{1?1}C* similar to vO→v+p/n+¹⁵N*/¹⁵O*?
 From naive picture, few γ rays are produced.

and NC vC γ production

Y.Kamyshkov et al. Phys.Rev. D 67 076007 (2003)

```
P3/2 knockout gives 2.1-MeV \gamma-ray.
Br=0.7*(4/6 x 0.2x1.0+2/6 x 0.7) = 23%
```

```
σ(NC νC γ) ~σ<sub>NCQE</sub>*0.23 (Eγ>0)
```

(2) γ-ray production in NC QE v-O reactions --Important Background to SRN -- H.Sekiya@neutrino2016

Measurement of γ rays from giant resonances of ¹²C and ¹⁶O in (p,p') reactions --GR-NaI coincidence experiment-- (p1

Makoto Sakuda (Okayama) @ CAGRA17 For RCNP E398 collaboration:

I.Ou, M.Reen, T.Sudo, R.Dhir, M.Sakuda, Y.Yamada, K.Hagiwara, D.Fukuda, T.Shirahige, Y.Koshio,

T.Mori(Okayama), A.Tamii, C.Iwamoto, T.Ito, M.Miura, T.Yamamoto, N.Aoi, E.Ideguchi, T.Suzuki, M.Yosoi (RCNP), T.Kawabata, S.Adachi, T.Furuno, M.Tsumura, M.Murata (Kyoto), H.Akimune (Konan), T.Yano(Kobe), H.Nakada(Chiba)

Outline

- 1. Purpose of E398 C,O(p,p')
- 2. Experiment
- 3. Results
- 4. Summary

Support from RCNP and JSPS Grant-In-Aid:

*(B) [2012-2014] "Study of γ -rays from p-O interaction for v-O reaction experiment"

*Innovative Areas (A Planned Research) [2014-2018]

"History of star formation through observations of Supernova Relic Neutrinos"

3. Measurement of γ rays from giant resonances of ¹²C and ¹⁶O in (p,p') reactions --GR-NaI coincidence experiment-- p13

Makoto Sakuda (Okayama) @ CAGRA17 For RCNP E398 collaboration:

I.Ou, M.Reen, T.Sudo, R.Dhir, M.Sakuda, Y.Yamada, K.Hagiwara, D.Fukuda, T.Shirahige, Y.Koshio, T.Mori(Okayama), A.Tamii, C.Iwamoto, T.Ito, M.Miura, T.Yamamoto, N.Aoi, E.Ideguchi, T.Suzuki, M.Yosoi (RCNP), T.Kawabata, S.Adachi, T.Furuno, M.Tsumura, M.Murata (Kyoto), H.Akimune (Konan), T.Yano(Kobe), H.Nakada(Chiba)

Support: JSPS Grant-In-Aid:

*(B) [2012-2014] "Study of γ -rays from p-O interaction for v-O reaction experiment"

*Innovative Areas ("Underground Particle&Nuclear Physics") [2014-2018] "History of star formation through observations of Supernova Relic Neutrinos" [I do RCNP C,O(p,p') and JPARC-MLF Gd(n, γ) experiments.]

3. RCNP E398 [Goal] Measurement of γ -rays ($\Gamma\gamma/\Gamma$) from O(p,p') and C(p,p')

- [Goal]: We measure the γ -decay probability($\Gamma\gamma/\Gamma$) ($E_{\gamma}>5$ MeV) from giant resonances of ¹⁶O and ¹²C, at ±1% stat. accuracy, as the functions of excitation energy (E_x).
 - Definition: The γ -decay probability $(\Gamma \gamma / \Gamma)(E_{\gamma} > 1.5 \text{MeV}) =$ (Number of γ -rays observed for $E_{\gamma} > 1.5 \text{ MeV})/(\text{Number of events excited in}$ the range Ex=15-30 MeV, each Ex bin) \rightarrow Fig.

(p2

- [Importance]: Data for $vO \rightarrow vO^* \rightarrow \gamma$ and $vC \rightarrow vC^* \rightarrow \gamma$ do not exist and they are very important to neutrino physics. Also, understanding the decay mechanism itself is interesting and important for nuclear physics. RCNP Grand-Raiden is the best place for this experiment.
- Proposal was approved in March, 2013 and Experiment was finished in May, 2014.

γ production in C,O(p,p') reaction Mandeep' slide

E398 would like to understand the decay mechanism experimentally.

Nucleus is excited to giant resonances by inelastic scattering.

Importance to SN Physics: Neutrino Bursts from SN explosion@10kpc

(p16

nu_e

 $\boldsymbol{\nu}_{_{e}}$

 \overline{v}_{e}

50

60

 v_{μ}, v_{τ}

□ It is important to measure both CC signals and NC events. Note: A.B.McDonald, Nobel Prize 2015 on Solar Neutrino Oscillations) We Do need to Measure $Br(C^*, O^* \rightarrow \gamma) = \Gamma \gamma / \Gamma (\mathbf{E}_x)$. --- Purpose of RCNP E398.

2. RCNP E398 O,C(p,p') Experiment

Ref. A. Tamii, H. Matsubara, et al.RCNP E249 & E299 Collaboration, 5-JAN-2011.

E398 (May 16-27, 2014)

3. Our Cross Sections measured with GR p20

9

Cf. SK-Gd: Gd(n, γ) is the decay from Giant Resonance 2⁻ See Photoneutron cross section= γ +Gd \rightarrow n+Gd

- Total photoneutron cross sections sometimes show 2 Giant Dipole Resonances (GDR), typical of the deformed nuclei, Gd.
- $Gd(n,\gamma)$ is the inverse reaction.

Cross Section $d\sigma/d\Omega$ (¹²C, 1⁺, 15.11MeV, T=1)

(¹²C, 1⁺, 15.11MeV) cross section data agree with DWBA07.
 歪曲波(大局的光学模型) + 1p shellの波動関数* + 自由核子相互作用

*Ref. Cohen S., Kurath D.: Nucl. Phys.73 (1965) 1.

*

21

3. NaI Energy Response before experiment (p13)

Result of Response Functions (Data/MC)

p26

2 3

(3-1) Results on Particle Decay:

 $^{12}C^* \rightarrow p/n + ^{11}B/^{11}C$ p10

γ-RAYS FROM ¹²C γ-rays were measured in coincidence with scattered protons using an array of Nal detectors.

 γ -ray energy spectra clearly show that γ -rays are emitted from the excited states of daughter nuclei.

How to obtain Branching ratios for possible levels from response functions -Mandeep's slide p28

γ-RAYS FROM ¹²C

Response functions $P(E_{\gamma},E)$ were generated for all the possible γ -rays (from daughter nuclei) using GEANT4 and were fitted to data. $\int P(E_{\gamma},E)dE = \eta \varepsilon^{o}(E_{\gamma})$ $P(E_{\gamma},E) = Energy deposited(E)$ when a γ -ray (E_{γ}) is E.,=0.5 Me irradiated uniformly at 10 cm from Nal Efficiency N_{Fx} = Excitation Counts $N_{\gamma}(E_{\gamma}) = N_{\text{Ex}} \sum Br_j Pj(E_{\gamma}, E)$ $Br_i = Branching ratio for j^{th} \gamma$ -ray(fit parameter) 12C: Ex=20-22MeV i = Data 10³ $v_{\nu}^{N}(E_{\gamma})$ E_v (MeV) → 2.12 MC 2.9 4.44 5.0 $N_{v}(E_{v}) = N_{Ev}(Br_{1}P_{1} + Br_{2}P_{2} + Br_{3}P_{3} + Br_{4}P_{4})$ Escape peak

After we have Br_j , γ -ray emission probability for $E_{\gamma} > E_{th}$ can be obtained as:

$$\frac{\Gamma}{\Gamma_{\text{tot}}} = \frac{N_{\gamma}(\text{Ex})}{N_{\text{Ex}}} = \sum_{j} Br_{j} \int_{\mathbf{E}_{\text{th}}}^{\mathbf{E}_{\text{max}}} P_{j} (E_{\gamma}, E) dE / \eta \varepsilon^{o}$$

The same procedure was repeated for all the other Ex bins

i=3

1500 2000 2500 3000 3500 4000 4500 500

10

γ -ray emission probability ($\Gamma\gamma/\Gamma$ (Ex))

The energy spectrum of γ -rays from giant resonances of ¹²C and ¹⁶O and the emission probability have been measured for the first time as a function of Ex.

Quasi-free knockout for ¹²C, ¹²C(e,e'p)¹¹B

Y.Kamyshkov et al. Phys.Rev. D 67 076007 (2003)

P3/2 knockout gives 2.1-MeV γ -ray. Br=0.7*(4/6 x 0.2x1.0+2/6 x 0.7) = 23%

Quasi-free knockout for ¹²C

We assume both giant resonances and quasi-free reaction.

148.50MeV@135deg

Electromagnetic (Direct) Decay Search -Eγ>10 MeV- Mandeep's slide p19

BRANCHING RATIO: (ELECTROMAGNETIC DECAY)

No γ -rays(E_{γ} > 10 MeV) are expected from hadronic mode, so, EM(Direct) decays can be observed in the region E_{γ} > 10 MeV.

At this moment, the value is not significant and we just give the upper limit.

E398:Summary

- 1. γ -ray energy spectra clearly show that γ -rays are emitted from the excited states of daughter nuclei.
- 2. We presented the emission probability of γ -rays from giant resonances of ¹²C and ¹⁶O which has been measured for the first time as a function of excitation energy (Ex).
- We performed decay model calculations for ¹²C and it fairly agrees with data for Ex< 27 MeV. The reason of decreasing trend could be Quasi-free knockout process.
- 4. We also presented the upper limit to direct decay branching ratio i.e.
 0.35% ±0.01%(stat.) ±0.3%(sys.).

E398:Applications to Neutrino Physics

Estimation of supernova neutrino Events

E398 results are applied for the estimation of N_{NC} for Super-K and The expected number of events from the core-collapse:

 $N_i = Flux(v_i) \times n_{target} \times \sigma_i$ Where $Flux(v_j) = \frac{L_v}{\langle E_v \rangle} \frac{1}{4\pi D^2}$ and σ_i is the cross section for reaction D = 10 kpcKamLAND (1kton) SK (32.48kton) Total Gravitational Energy $L = 3 \times 10^{53} \text{ ergs}$ *n_{target}* is number of targets n_{12} C :4.30×10³¹ n_{16}^{16} O :1.09×10³³ n_{p} :2.17×10³³ n_p :8.60×10³¹ VIIsuna hahivid J

KamLAND collaboration: Phys. Rev. C 84 (2011) 035804

Assumptions

The NC events are assumed to be induced by only ν_x (ν_μ , ν_τ and their anti

Now, we need cross section information

Ref. J. F. Beacom and M. R. Vagins: Phys. Rev. Lett.

Inelastic Scattering Cross section:¹²C

The differential inelastic scattering cross sections for ${}^{12}C(\nu, \nu')$ were folded by **4** Fermi-Dirac spectrum.

Inelastic Scattering Cross section:¹⁶O

The differential inelastic scattering cross sections for ${}^{16}O(\nu, \nu')$ were folded by Fermi-Dirac spectrum.

This γ -ray emission probability takes into $\Gamma_{\gamma}(E_x) dE_x$ account γ-rays which are only from Iso-vector ¹⁶O_{(Εγ>0.5 MeV}: **2.49** + $\sigma_{\rm NC}\gamma \rightarrow$ de-excitations. 0.33 x 10⁻⁴² cm²

(1) E. Kolbe et al Nucl. Phys. A540 (1992)

How to estimate the number of SN $\nu ^{\prime }s$

INELASTIC SCATTERING CROSS SECTION: 12C

The differential inelastic scattering cross sections for ${}^{12}C(\nu, \nu')$ were folded by Fermi-Dirac spectrum.

18 June, 2009

Makoto Sakuda@LOWE

Supernova Neutrino Events

Using all the information we estimate the neutrino events.

Detector	Interactio n	Reaction	N _i (E398)	Other Calculation S
KamLAND (1 kton) $E_{\gamma} > 0.5 \text{ MeV}$	CC NC NC	$\nu_e + p \rightarrow e^+ + n$ $\nu_x + {}^{12}C \rightarrow \nu_x + \gamma_{15.1} + {}^{12}C$ $\nu_x + {}^{42}C \rightarrow \nu_x + \gamma + X$	320 53 20 ± 2	330 58 *(1) -
Super-K $E_{\gamma} > 5.0 \text{ MeV}$	CC NC	$\nu_e + p \rightarrow e^+ + n$ $\nu_x + {}^{16}O \rightarrow \nu_x + \gamma + X$	8120 720 ± 170	8300

- NC events for liquid scintillator type neutrino detectors2were estimated for the first time.
- This analysis considers the decay only from iso-vector excitations
- * We also give the events for Super-K with γ threshold > 0.5 MeV

(1) A. Suzuki: Nucl. Phys. B (Proc.Suppl.) 77 (1999) 171101

(2) J.F. Beacom, P.Vogel:

Summary (of data analysis)

- p20
- We have carried out E398 in 2014 to measure γ rays from giant resonances of ¹²C and ¹⁶O using Grand Raiden (GR) and an array of NaI(TI) γ -ray counters.
 - Good control of γ-ray Response Functions using radioactive sources and known γ-ray levels (2.1,4.4,6.9, 15.1MeV) throughout the experiment was critical. →Sudo's talk
- GR-NaI Coincidence results:

→Mandeep's talk

- First measurement of the emission probability (Γγ/Γ(Ex)) as a function of Ex for 16-34 MeV (every 2 MeV).
- The γ-ray energy spectra clearly show that γ rays are emitted from the excited states of the daughter nuclei after hadronic (p-/n-) decay of ¹²C and ¹⁶O, qualitatively consistent with a prediction by Langanke (1996).
- The γ-ray emission probability increases as Ex up to Γγ/Γ(Ex)=0.7 for ¹²C at Ex=27 MeV and 0.9 for ¹⁶O at Ex=23 MeV until the energy threshold for two nucleons decay, and then decreases gradually.

Summary –continued (Model Calculation/Future)

- We performed decay model calculations for ¹²C considering optical potential and it fairly agrees with data for Ex< 27 MeV.
- We need better theoretical understanding of 1N and 2N decays of giant resonances and a reliable quasi-free calculation. We welcome your suggestions.
- We will be publishing data on the spectrum and the γ emission probability.
- We will continue to work on the search for electromagnetic (direct) decays.
- Experiment: We wish to continue the experiment covering θ_p>3 degrees at GRFBL to understand better on GDR and SDR (hadronic and EM) decays, and quasi-free process. We would like to understand the decay mechanism quantitatively.

- 1) E_v >100MeV: Nucleon knockout (Excitation of residual nucleus).
 - > $vO \rightarrow v+p/n+{}^{15}N^{*}/{}^{15}O^{*}$ Ankowski,Benhar,MS et al.*Phys.Rev.Lett.***108**(2012)052505
 - > $vC \rightarrow v+p/n+{}^{11}B^{*}/{}^{11}C^{*}$: I comment How different C is from O? ← This talk (1)
- 2) E_v<100MeV: Inelastic scattering (Giant resonances)
 - > $vC,O \rightarrow vC^*,O^* \rightarrow \gamma$: Langanke et al., *Phys.Rev.Lett.***76**(1996).
 - > They calculate $vO,C \rightarrow vC^*(15.1 \text{MeV})$ and $O^* \rightarrow \gamma(>5 \text{MeV})$.
 - ▶ We (RCNP E398) measure Br(C*,O* → γ (>1.5MeV) and reevaluate SN rate. ←This talk (2)
- We would like to address all the questions in a quantitative way experimentally and theoretically.

We will propose an extension of the experiment at GRFBL (Grand-Raiden Forward Beam Line, RCNP)

- A.Tamii (GRFBL workshop, Nov.28-29,2013)

ー新学術「地下素核研究」第4回超新星ニュートリノ研究会 (平成30年1月8-9日、四季の湯強羅静雲荘)の案内一

- 参加登録は、以下のURLで受け付けております。 http://www.lowbg.org/ugnd/workshop/groupC/sn20180108/
- 「超新星からのマルチメッセンジャー」固武慶(福岡大学)
- Kate Scholberg, "Coherent Neutrino Nucleus Scattering"

Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos

CAPTAIN@NuInt17

Low-Energy Neutrino Physics Program

 Study low-energy neutrino interactions in LAr for SN detections in DUNE

 $\nu_{e} \operatorname{ArCC}: \qquad \nu_{e} + {}^{40} \operatorname{Ar} \rightarrow e^{-} + {}^{40} \operatorname{K}^{*}$ $\bar{\nu}_{e} \operatorname{ArCC}: \qquad \bar{\nu}_{e} + {}^{40} \operatorname{Ar} \rightarrow e^{+} + {}^{40} \operatorname{Cl}^{*}$ $\operatorname{ES}: \qquad \nu_{x} + e^{-} \rightarrow \nu_{x} + e^{-}$ $\nu_{x} \operatorname{ArNC}: \qquad \nu_{x} + {}^{40} \operatorname{Ar} \rightarrow {}^{40} \operatorname{Ar}^{*} + \gamma$

- Dominantly v_e interactions
- 1000s events anticipated in full-CAPTAIN
- Study de-excitation gamma rays and neutron emission 18 June, 2009

Robert L. Cooper New Mexico State University on behalf of the CAPTAIN Collaboration

A. Bolozdynya et al. arXiv:1211.5199

NaI Array and Veto Counters

10	11	12	13	14		
25	1	2	3	15		
24	8		4	16		
23	7	6	5	17		
22	21	20	19	18		
Forwa	ard angle	E	Backward angle Beam direction			