Neutrino induced meson production and Parity Violating Electron Scattering

Toru Sato

Osaka University

Collaborators: S.X. Nakamura, H. Kamano, A. Imai

electroweak meson production reaction beyond Delta

GeV neutrino in current and future accelerator neutrino experiments.

- Description of neutrino reactions in the resonance region is important.
- Reaction model should be constrained as much as possible from available pion, photon, and electron induced meson production data.
- Resonance region (W < 2GeV) and DIS($W > 2GeV, Q^2 \ge 1GeV^2$)

$$\left(< MB | J^{\mu}_{\alpha} | N > \right)$$

$$\begin{array}{lll} J^{\mu}_{em} &=& V^{\mu}_{3} + V^{\mu}_{IS} \\ J^{\mu}_{CC} &=& V^{\mu}_{1+i2} - A^{\mu}_{1+i2} & (\Delta S = 0 \text{ current without CKM}) \\ J^{\mu}_{NC} &=& V^{\mu}_{3} - A^{\mu}_{3} - 2\sin^{2}\theta_{W}J^{\mu}_{em} - \frac{1}{2}\bar{s}\gamma^{\mu}(1-\gamma_{5})s \end{array}$$

- Isobar model and ANL-Osaka coupled channel model
- Neutrino induced single and double pion production
- Inclusive cross section and parity violating asymmetry
- Summary

Isobar Models

For each partial wave amplitude $(J^{\pi}I)$

$$\mathcal{F}^{J^{\pi}I} = \frac{g_{\pi NR} \ g_{JNR}}{W - M_R + i\Gamma_R/2}$$

- Mass (M_R) , Width (Γ_R) of resonance R from PDG.
- Coupling constants $g_{\pi NR}$, g_{VNR} can be estimated from branching ratio (B_{α}) , g_{ANR} : use quark model estimation or use $g_{\pi NR}$ assuming PCAC.

$$g_{\pi NR} = \sqrt{\frac{\Gamma}{2}B_{\pi}}, \quad g_{VNR} = \sqrt{\frac{\Gamma}{2}B_{\gamma}}$$

- No control of non-resonant mechanism, relative phases between non-res \leftrightarrow res, (J^{π},I) channels.
- model implemented in neutrino generators.(Rein-Sehgal model)

T. Sato (Osaka U.)

neutino reaction and PV

ANL-Osaka Coupled channel model

new feature beyond $\Delta_{33}(1232)$

• opening of $\eta N, \pi \pi N, K\Lambda, K\Sigma, ,$, channels

 \rightarrow needs multi-channel unitarity including three-body($\pi\pi N$).

• Meson exchange picture of meson-baryon interaction.

- Included Meson-baryon channels: $\pi N, \eta N, \pi \pi N(\sigma N, \rho N, \pi \Delta), K\Lambda, K\Sigma$
- Satisfy three $body(\pi\pi N)$ unitarity

$$T = V + VG_0T$$

Step 1: πN reactions. [fix strong interaction part of model]

Step 2:Analysis of $\gamma, \gamma^*(\sigma/d\Omega, P, \Sigma, ..)$.[fix model of Vector current]

validity of reaction mechanisms(non-resonant, resonant) are tested through the analysis of extensive data.

Step 3 Axial vector coupling of N to $N^*, \Delta($ only parameters left undetermined.):

PCAC(not all coupling constants are determined.), Q^2 dependence: assume dipole

S. X. Nakamura et al. PRD 92, 074024 (2015)

T. Sato (Osaka U.)

Data on Neutrino induced Single pion production (http://hepdata.cedar.ac.uk/review/neutrino/)

				1π	2π
GGM	Lerche 1978	ν	Propane	1-10	
	Bolognese 1979	$\bar{\nu}$	Propane-Freon	1-7.5	
BEBC	Allen 1986	ν	р	10-80	
	Allasia 1990	$ u, ar{ u}$	d	5-150	
BNL	Kitagaki 1986	ν	d	0.5 - 3	0.5 - 3
ANL	Barish 1979	ν	p,d	0.4 - 6	
	Radecky 1982	ν	d	0.5 - 1.5	
	Day 1983	ν	d		0.75-5.55
FNAL	Bell 1978	ν	р	15-40	
SKAT	Ammosov 1988	ν	$Freon(CF_3Br)$	4-18	
	Grabosch 1989	$ u, ar{ u}$	$Freon(CF_3Br)$	3.5-6	

• Reanalysis of ANL/BNL data

(C. Wilkinson et al. PRD90 (2014), Rodrigues et al. arXiv:1601.01888)

Single pion production in N^*, Δ region

 $d\sigma/dW$ of single pion production $E_{\nu} = 40 GeV$

Only qualitative comparison can be made for higher \boldsymbol{W} region.

Two-pion production

pi N \rightarrow pi pi N reaction

H. Kamano@BARYON10

Neutrino induced two pion production

Near threshold(compare with Hernandez et al.(D(1232)+N(1440))

How well our model accounts total strength of reaction?

- $Q^2 = 0$ PCAC (compare with πN total and elastic cross sections)
- Large Q^2

vector current : data and parton model axial vector current : parton model, PV electron scattering Axial vector current at $Q^2 = 0$

Axial vector current at large Q^2

strength of axial vector current at large W, Q^2 in DCC model may be too weak.

 $F_2^{CC} \sim |V|^2 + |A|^2 \qquad \qquad F_3^{CC} \sim \operatorname{Re}(VA^*) \qquad \qquad F_2^{CC}$

$$\begin{array}{ll} F_2^{CC} & \propto |V_{IV}|^2 + |A_{IV}|^2, & F_2^{em} \propto |V_{em}|^2 & \mbox{DCC} \\ F_2^{CC} & \approx \frac{18}{5} F_2^{em} \sim x(u+\bar{u}+d+\bar{d}) & \mbox{PDF} \end{array}$$

 $F_i^\alpha = \frac{F_{ip}^\alpha + F_{in}^\alpha}{2}$

$$F_3^{CC}$$
 and $F_3^{\gamma Z}$ $\left(F_i^lpha = (F_{ip}^lpha + F_{in}^lpha)/2
ight)$

$$\begin{array}{ll} 2F_3^{\gamma Z} &= F_3^{CC} \propto V_{IV} (A_{IV})^* & \mbox{DCC} \\ 2F_3^{\gamma Z} &\approx F_3^{CC} \sim u - \bar{u} + d - \bar{d} & \mbox{PDF} \end{array}$$

* $W_3^{\gamma N}$ can be used to test F_3^{CC} for neutrino reaction.

Parity violating electron scattering

Parity violating asymmetry of $N(\vec{e}, e')X$ reaction $\langle \vec{\sigma} \cdot \vec{p}_e \rangle$

 $A_{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = -\frac{Q^{2}G_{F}}{\sqrt{2}4\pi\alpha} \frac{N}{D}$ $N = \cos^{2}\frac{\theta}{2}W_{2}^{\gamma Z} + \sin^{2}\frac{\theta}{2}[2W_{1}^{\gamma Z} + (1 - 4\sin^{2}\theta_{W})\frac{E_{e} + E_{e}^{\prime}}{M_{N}}W_{3}^{\gamma Z}]$ $D = \cos^{2}\frac{\theta}{2}W_{2}^{em} + \sin^{2}\frac{\theta}{2}W_{1}^{em}$

Here

$$\begin{split} W_i^{em} &\propto & \sum_f \delta(p_i + q - p_f) < f|J_{em}^{\mu}|N > < f|J_{em}^{\nu}|N >^* \\ W_i^{\gamma Z} &\propto & \sum_f \delta(p_i + q - p_f)[< f|J_{em}^{\mu}|N > < f|J_{NC}^{\nu}|N >^* + < f|J_{NC}^{\mu}|N > < f|J_{em}^{\nu}|N >^*] \end{split}$$

Parity Violating Asymmetries

Using $V_{NC}^{\mu} = (1 - 2\sin^2\theta_W)J_{em}^{\mu} - V_{IS}^{\mu}$

$$Q^{2}A_{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = -\frac{G_{F}}{\sqrt{2}4\pi\alpha} [2 - 4\sin^{2}\theta_{W} + \Delta_{V} + \Delta_{A}]$$

= -8.99 × 10⁻⁵[1.075 + \Delta_{V} + \Delta_{A}]

$$\Delta_V = -\left[\cos^2 \frac{\theta}{2} W_2^{em-is} + 2\sin^2 \frac{\theta}{2} W_1^{em-is}\right]/D$$

$$\Delta_A = \sin^2 \frac{\theta}{2} (1 - 4\sin^2 \theta_W) \frac{E_e + E'_e}{M_N} W_3^{\gamma Z}/D$$

• Δ_V : only isospin 1/2 final state contributes. expected to be small in the Delta region • $W_3^{\gamma Z}$ might be seen in backward electron scattering

Estimation of Δ_V, Δ_A

 $p(\vec{e},e'), W = 1.232 GeV, \theta = 60^o (left)$

 $110^{o}(right)$

Parity Violating Asymmetries

Parity violating asymmetry of $d(\vec{e},e')$ reaction in DCC model with simple estimation for deuteron reaction

$$Q^{2}A_{PV} = -\frac{G_{F}}{\sqrt{2}4\pi\alpha} \frac{N_{p} + N_{n}}{D_{p} + D_{n}} = -8.99 \times 10^{-5} [1.075 + \Delta_{V} + \Delta_{A}]$$

The PVDIS Collaboration PRC91 045506 (2015) ($E_e = 4.867 GeV, \theta = 12.9^{\circ}$)

Summary

- Current status of DCC model on neutrino-nucleon reaction in the resonance region is discussed.
- In $\nu p(\bar{\nu} n)$ reaction, $\Delta_{33}(1232)$ plays dominant role.For other channels, N^* resonances contribute appreciably.
- One can obtain hint on the validity of the model comparing with parton model, suggesting missing strength of axial vector current at non-zero Q^2 in DCC model.
- PV asymmetry, in principle, give us information on W_3^{CC} .
- To disentangle nuclear effects from model dependence of nucleon reaction, benchmark test will be necessary. (Rein-Sehgal, Hernandez-Nieves, Leitner-Lalakulich-Mosel, Aligah,Kabirnezhad,Nakamura et al.) not only $\sigma(E_{\nu})$,

$$\frac{d\sigma}{dW dQ^2}, \quad \frac{d\sigma}{dW dQ^2 d\Omega_{\pi}^*}$$
$$L^{\mu\nu}W_{\mu\nu} = \frac{1}{2} \sum_{s'_N,s_N} [R_T + R_L + R_{LT}\cos\phi_{\pi} + R_{TT}\cos 2\phi_{\pi} + R_{LT'}\sin\phi_{\pi} + R_{TT'}\sin2\phi_{\pi}]. \quad (28)$$

Acknowledgments KAKENHI JP25105010, JP16K053454.

T. Sato (Osaka U.)

NPB62 (1973) 61, C. Wilkin et al. $\bar{\sigma} = [\sigma_{\pi^-} + \sigma_{\pi^+}]/2, \quad \Delta \sigma = [\sigma_{\pi^-} - \sigma_{\pi^+}]/2$

Table 1

Average cross section $\overline{\sigma}$ and cross-section differences $\Delta \sigma$ for π^{\pm} on ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹²C and ³²S. Only statistical errors are quoted. In column 4 the relative real part ρ of the forward scattering amplitude used for the extraction of the cross-section difference is listed. Column 6 gives the increase of the cross-section difference for a decrease of ρ by 0.1

Nucleus	Momentum (MeV/c)	Average cross section	Cross-section difference	Relative	$\frac{\Delta\sigma}{\partial\rho} \times 0.1$
		(mb)	(AB)	ρ (m)	b)
12	3/4	441 * 1	30 x #	- 0.00	
**C	167	473 ± 3	70 ± 6	0.84	10
	202	627 ± 2	68 ± 4	0.43	12
	243	693 ± 2	29 ± 4	0.15	13
	293	661 ± 2	6 ± 4	- 0.09	12
	332	596 ± 2	9 ± 3	- 0.23	10
	372	528 ± 2	9 ± 3	- 0.34	8
³² S	170	1235 ± 6	213 ± 11	0.50	43
	203	1334 ± 6	97 ± 11	0.30	45
	244	1351 ± 5	76 ± 10	0.07	48
	294	1280 ± 4	59 ± 8	- 0.09	42
	333	1200 ± 3	37 ± 6	- 0.17	38
	373	1090 ± 3	21 ± 6	- 0.23	35

NPA209 (1973)1, B.W.Allardyce et al.

TABLE 2

(values in mb)									
Momentum (GeV/c)	с	Al	Ca	Ni	Sn	¹²⁰ Sn	Но	Pb	²⁰⁸ Pb
0.71	243±3		608±5	764±6	1221 ± 11			1806±15	
0.84	250 ± 2	433±6	607±5	764 ± 6	1230 ± 9	1241 ± 10	1583 ± 14	1814 ± 12	1759 ± 40
1.00	264 ± 1	454 ± 3	624 ± 5	772 ± 3	1249 ± 6	1260 ± 11	1607 ± 13	1808 ± 6	1810± 9
1.36	254 ± 2	444 ± 3	611 ± 4	771 ± 5	1249 ± 7	1258 ± 10	1594 ± 10	1817 ± 9	1806 ± 16
1.58	246 ± 2	444 ± 4	598±5	758 ± 4	1233 ± 5			1802 ± 7	
2.00	224 ± 2		550 ± 3	710 ± 4	1164 ± 11			1703 ± 16	

π⁻ reaction cross sections (values in mb)

An additional systematic error of ± 1 % should be applied to the values for each momentum at 0.71, 0.84 and 1.00 GeV/c. (See text for a discussion of errors.)

π^+ reaction cross sections (values in mb)									
Momentum (GeV/c)	с	Al	Ca	Ni	Sn	120Sn	Но	РЬ	208Pb
0.71 0.84 1.00 1.36 1.58 2.00	263 ± 3 246 ± 3 257 ± 2 248 ± 3 243 ± 3 224 ± 2	429 ± 11 451 ± 3 437 ± 4 435 ± 3	587 ± 7 594 ± 9 609 ± 5 599 ± 4 601 ± 5 555 ± 5	$741\pm8742\pm9749\pm5752\pm5750\pm6707\pm8$	$\begin{array}{c} 1187 \pm 17 \\ 1190 \pm 10 \\ 1231 \pm 8 \\ 1217 \pm 9 \\ 1208 \pm 11 \\ 1154 \pm 10 \end{array}$	1221 ± 14 1254 ± 10 1223 ± 14	1543±28 1606±15 1544±26	1754 ± 16 1752 ± 16 1772 ± 9 1743 ± 13 1736 ± 16 1670 ± 13	1764±21 1762±26 1742±24

An additional systematic error of ± 1 % should be applied to the values for each momentum at 0.71, 0.84 and 1.00 GeV/c. (See text for a discussion of errors.)