Gamow-Teller Transitions in High-Resolution ²³Na(³He, t)²³Mg Reaction

Y. Fujita^a, Y. Shimbara^a, T. Adachi^a, G.P.A. Berg^b, H. Fujimura^b, H. Fujita^a, K. Hara^b, K. Hatanaka^b, J. Kamiya^b, T. Kawabata^b, Y. Kitamura^b, Y. Shimizu^b, M. Uchida^c, H.P. Yoshida^b, M. Yoshifuku^a and M. Yosoi^c

^a Dept. Phys., Osaka University, Toyonaka, Osaka 560-0043 ^bRCNP, Osaka University, Ibaraki, Osaka 567-0047 ^c Dept. Phys., Kyoto University, Sakyo, Kyoto 606-8224

In order to study the transitions to the GT states in 23 Mg, the 23 Na(3 He, t) experiment was performed at RCNP, Osaka by using a 140 MeV/nucleon 3 He beam from the K=400 RCNP Ring Cyclotron and the Grand Raiden spectrometer [1] placed at 0° .

The target was a thin foil of Na₂CO₃ using polyvinylal cohol as supporting material [2]. The total thickness of the target was approximately 2 mg/cm². The target is effectively a mixture of ²³Na, carbon isotopes ¹²C and ¹³C (natural abundance 98.9% and 1.1%, respectively), and oxygen isotopes ¹⁶O and ¹⁸O (natural abundance 99.8% and 0.2%, respectively). After the (³He, t) charge-exchange reactions, these nuclei become ²³Mg, ¹²N, ¹³N, ¹⁶F, and ¹⁸F, where the Q values of the reactions are -4.08, -17.36, -2.24, -15.44, and -1.67 MeV, respectively. Owing to the large difference of Q values, the low-lying states in ²³Mg are observed without being affected by the strongly excited states in ¹²N and ¹⁶F. Since the Q values of ¹³C and ¹⁸O impurities are rather similar to that of ²³Na target, states of ¹³N and ¹⁸F may disturb the ²³Mg spectrum. The identification of these states and the states of ²³Mg was possible in the good resolution experiment described below.

A resolution far better than the momentum spread of the beam was realized by applying the dispersion-matching technique [3]. Using the new high-resolution "WS" course [4] for the beam transportation and the "faint beam method" to diagnose the matching conditions [5, 6], an energy resolution of 45 keV (FWHM) was achieved. With the improvement of resolution, states of ²³Mg up to $E_x = 9$ MeV were clearly resolved as shown in Fig. 1. Good angular resolutions in x and y directions were achieved, respectively, by applying the angular dispersion-matching technique and by realizing the "over-focus mode" in the spectrometer [7]. The "0° spectrum" in Fig. 1 shows events within the scattering angle $\leq 0.8^{\circ}$.

In order to identify the states originating from 13 C and 18 O nuclei in the target, a spectrum of a Mylar target was measured under the same condition as the Na₂CO₃ target. From the comparison of both spectra, it was found that the wider state at $E_x \approx 1.7$ MeV in Fig. 1 was the 3.502 MeV state in 13 N.

The excitation energies of states were determined with the help of kinematic calculations, where known states of 13 N and 16 F observed in the spectrum of Mylar target were used as overall calibration standard for a wide Q value. Owing to the small Q value of the (3 He, t) reaction on 13 C and the large Q value on 16 O, the E_x values of 23 Mg states were determined by interpolation.

It is known that at 0° the CE cross section for a GT transition is approximately proportional to B(GT) [9]. In order to obtain the absolute B(GT) values, a standard of B(GT) is needed. Assuming isospin symmetry, the B(GT) values of mirror transitions are the same. As the standard, we used the B(GT) value of 0.146 obtained in the β -decay from the ^{23}Mg ground state to the 0.440 MeV state of ^{23}Na [8]. We presumed the same B(GT) value for the mirror transition to the ^{23}Mg , 0.451 MeV state in the $^{23}Na(^3He,t)$ reaction. By using the proportionality, the B(GT) values for other excited states were calculated from their peak

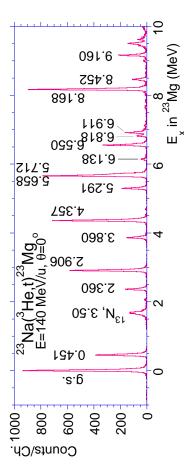


Figure 1: The low-excitation region of the 0° , $^{23}\text{Na}(^{3}\text{He},t)$ spectrum measured by using a Na₂CO₃ target. A good resolution of 45 keV has been achieved.

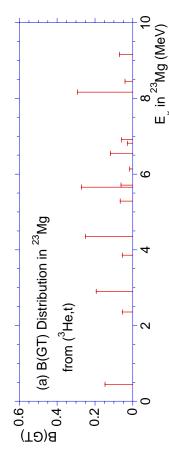


Figure 2: The B(GT) strength distribution from $^{23}Na(^{3}\text{He},t)^{23}Mg$ reaction.

intensities after making the excitation-energy correction. The $B(\mathrm{GT})$ distribution is shown

The B(GT) values were previously evaluated for the transitions to two low-lying states in a (p, n) reaction at $E_p = 160$ MeV [10]. The values were 0.153 and 0.062 for the 0.45 and 2.36 MeV states, respectively. In deriving these values, they assumed a universal unit cross section averaged for various nuclei. If these values are normalized by the above-mentioned β -decay B(GT) value which we used, then the B(GT) values would become 0.146 and 0.059, which are in agreement with our values of 0.146 and 0.055, respectively.

References

- M. Fujiwara et al., Nucl. Instrum. Meth. Phys. Res. A 422, 484 (1999).
- Y. Shimbara et al., OULNS (Osaka Univ.), Annual Report, 2001, and Nucl. Instrum. Meth. Phys. Res. A, to be submitted.
- Y. Fujita et al., Nucl. Instrum. Meth. Phys. Res. B 126, 274 (1997); and references therein. 33
 - T. Wakasa et al., Nucl. Instrum. Meth. Phys. Res. A 482, 79 (2002).
 H. Fujita et al., Nucl. Instrum. Meth. Phys. Res. A 484, 17 (2002).
 Y. Fujita et al., J. Mass Spectrom. Soc. Jpn. 48(5), 306 (2000).
 H. Fujita et al., Nucl. Instrum. Meth. Phys. Res. A, A 469, 55 (2001).

- P. M. Endt, Nucl. Phys. **A521**, 1 (1990); P. M. Endt, ibid, **A633**, 1 (1998), and references therein. 4000
- T.N. Taddeucci et al., Nucl. Phys. **A469**, 125 (1987), and refs. therein.
- C.D. Goodman, in: Proc. Int. Symp. on Nuclear Reaction Dynamics of Nucleon-Hadron Many Body System, Editors, H. Ejiri, T. Noro, K. Takahisa, and H. Toki (World Scientific Singapore), p. 125. $\begin{bmatrix} 9 \\ 10 \end{bmatrix}$