Five-Body Calculation of ${}^5_\Lambda \mathrm{He}$ with Explicit Σ Admixture

H. Nemura^a, Y. Akaishi^a and Y. Suzuki^b

^aInstitute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

^bDepartment of Physics, Niigata University, Niigata 950-2181, Japan

Few-body calculations for s-shell hypernuclei with mass number A=3-5 are important not only to explore exotic nuclear structure, including the strangeness degrees of freedom, but also to clarify the characteristic features of the hyperon-nucleon (YN) interaction. The complete set of the observed separation energies $(B_{\Lambda}$'s) for s-shell Λ hypernuclei are expected to provide important information on the YN interaction, because the relative strength of the spin-dependent term or of the $\Lambda N - \Sigma N$ coupling term is affected from system to system. For example, since ${}^4_{\Lambda}$ He and 3 He have both the isospin $T=\frac{1}{2}$, both $[\phi_c \otimes \psi_{\Lambda}]_{T=\frac{1}{2}}$ and $[\phi_c \otimes \psi_{\Sigma}]_{T=\frac{1}{2}}$ components would contribute to the bound states, where ϕ_c is the wave function of the core nucleus (3 He) and ψ_{Λ} (ψ_{Σ}) is the wave function of the relative motion between the core nucleus and Λ (Σ). On the other hand, since the ground states of ${}^5_{\Lambda}$ He and 4 He are both T=0, admixture of Σ component (e.g. $[\phi'_c \otimes \psi_{\Sigma}]_{T=0})$ would be suppressed in ${}^5_{\Lambda}$ He, where ϕ'_c (with T=1) is not ever equal to the wave function of the 4 He (with T=0). Although few-body studies for A=3,4 hypernuclei have been conducted using modern YN interactions[1, 2, 3], these calculations have not yet reached a stage to calculate the ${}^5_{\Lambda}$ He as five-body system.

The NN tensor interaction due to a one-pion-exchange mechanism is the most important ingredient for the binding mechanisms of light nuclei. More than a third, or about one half, of the interaction energy comes from the tensor force for the ${}^4{\rm He}[4,\,5,\,6]$. Since the pion-(or kaon-) exchange also induces the $\Lambda N-\Sigma N$ transition for the YN sector, both the NN and $\Lambda N-\Sigma N$ tensor interactions may also play important roles for light hypernuclei. If this is the case, the structure of the core nucleus (${}^4{\rm He}$) in the hypernucleus (${}^5_{\Lambda}{\rm He}$) would be strongly influenced by the presence of a Λ particle.

Recently, we performed ab initio-type variational calculations for the complete set of the s-shell Λ hypernuclei by explicitly including Σ degrees of freedom[7]. Four sets of YN interactions (SC97d(S), SC97e(S), SC97f(S) and SC89(S))[8] and a set of NN interaction (G3RS)[9] were used. The SC97d-f(S) and SC89(S) are set to reproduce the low-energy S matrix of the original Nijmegen YN potentials[10]. Table 1 lists the results of the Λ separation energies,

$$B_{\Lambda}({}_{\Lambda}^{A}\mathbf{Z}) = B({}_{\Lambda}^{A}\mathbf{Z}) - B({}^{A-1}\mathbf{Z}). \tag{1}$$

Table 1: Λ separation energies, given in units of MeV, of A=3-5 Λ -hypernuclei.

	$B_{\Lambda}(^{3}_{\Lambda}\mathrm{H})$	$B_{\Lambda}(^4_{\Lambda}{ m H})$	$B_{\Lambda}({}^{4}_{\Lambda}\mathrm{H}^{*})$	$B_{\Lambda}(^{4}_{\Lambda}\mathrm{He})$	$B_{\Lambda}(^{4}_{\Lambda}\mathrm{He^{*}})$	$B_{\Lambda}({}^{5}_{\Lambda}{ m He})$	χ^2
SC97d(S)	0.01	1.67	1.20	1.62	1.17	3.06	0.79
SC97e(S)	0.10	2.06	0.92	2.02	0.90	2.59	0.54
SC97f(S)	0.18	2.16	0.63	2.11	0.62	1.96	1.96
SC89(S)	0.37	2.48	${\it unbound}$	2.40	unbound	0.14	(> 11.67)
Expt.	0.13(5)	2.04(4)	1.00(4)	2.39(3)	1.24(4)	3.12(2)	

$$\chi^2 = \sum_{\mathbf{X}} \left(B_{\Lambda}^{\text{(calc)}}(\mathbf{X}) - B_{\Lambda}^{\text{(expt)}}(\mathbf{X}) \right)^2, \tag{2}$$

where the summation is taken over $X = ({}^3_{\Lambda}H, {}^4_{\Lambda}H, {}^4_{\Lambda}H^*, {}^4_{\Lambda}He, {}^4_{\Lambda}He^*, {}^5_{\Lambda}He)$. The bound-state solution of ${}^5_{\Lambda}He$ was obtained, which is a *first ab initio* calculation including explicit Σ admixture. The number of $\chi^2 = 0.54$ by using the SC97e(S) is the smallest among the YN interactions employed in the calculation.

Table 2 lists the probability, P_{Σ} (in percentage), of finding a Σ particle in the system. A sizable amount of $P_{\Sigma}({}_{\Lambda}^5{\rm He})$ was found; The $P_{\Sigma}({}_{\Lambda}^5{\rm He})=1.52\%$ of the SC97e(S) is slightly larger than the $P_{\Sigma}({}_{\Lambda}^4{\rm H})=1.49\%$ of the SC97e(S). This large $P_{\Sigma}({}_{\Lambda}^5{\rm He})$ value is due to the tensor $\Lambda N-\Sigma N$ transition potential. The tensor $\Lambda N-\Sigma N$ transition potential contributes dominantly to the energy expectation value of the YN interaction. In the case of ${}_{\Lambda}^5{\rm He}$ using SC97e(S), the energy expectation value of the YN interaction is about -21 MeV, while the contribution from the tensor $\Lambda N-\Sigma N$ transition part is -19.26 MeV. Therefore, the $\Lambda-\Sigma$ coupling is considerably important to make the ${}_{\Lambda}^5{\rm He}$ bound. The naive picture as $\alpha+\Lambda$ is no longer suitable for a realistic description of ${}_{\Lambda}^5{\rm He}$. Regarding this kind of $\Lambda-\Sigma$ coupling, another interesting light hypernucleus is ${}_{\Lambda}{}_{\Lambda}^6{\rm He}$. Investigations into the strength of the $\Lambda\Lambda$ interaction based on the experimental binding energy of ${}_{\Lambda}{}_{\Lambda}^6{\rm He}[11]$ should take account of explicit Σ (and probably Ξ) admixture(s). The RCNP's SX-5 is a efficient computer for these five- and six-body calculations.

Table 2: Probabilities of finding a Σ particle, given in percentage, of A=3-5 Λ -hypernuclei.

	$P_{\Sigma}(^{3}_{\Lambda}\mathrm{H})$	$P_{\Sigma}(^{4}_{\Lambda}\mathrm{H})$	$P_{\Sigma}(^{4}_{\Lambda}\mathrm{H}^{*})$	$P_{\Sigma}(^{4}_{\Lambda}\mathrm{He})$	$P_{\Sigma}(^{4}_{\Lambda}\mathrm{He^{*}})$	$P_{\Sigma}(^{5}_{\Lambda}\mathrm{He})$
SC97d(S)	0.06	1.27	1.37	1.24	1.35	2.02
SC97e(S)	0.15	1.49	0.98	1.45	0.96	1.52
SC97f(S)	0.23	1.88	1.09	1.83	1.08	1.83
SC89(S)	0.65	3.64	unbound	3.50	unbound	1.20

References

- [1] K. Miyagawa et al., Phys. Rev. C **51** (1995) 2905.
- [2] E. Hiyama et al., Phys. Rev. C 65 (2001) 011301.
- [3] A. Nogga, H. Kamada and W. Glöckle, Phys. Rev. Lett. 88 (2002) 172501.
- [4] Y. Akaishi, in *Cluster Models and Other Topics*, edited by T. T. S. Kuo and E. Osnes (World Scientific, Singapore, 1986), p.259.
- [5] Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems, Lecture Notes in Physics, Vol. m54 (Springer-Verlag, Berlin Heidelberg, 1998).
- [6] Steven C. Pieper et al., Phys. Rev. C 64 (2001) 014001.
- [7] H. Nemura, Y. Akaishi and Y. Suzuki, nucl-th/0203013.
- [8] Y. Akaishi et al., Phys. Rev. Lett. 84 (2000) 3539.
- [9] R. Tamagaki, Prog. Theor. Phys. **39** (1968) 91.
- [10] S. Shinmura, private communication.
- [11] H. Takahashi et al., Phys. Rev. Lett. 87 (2001) 212502.