Gamow-Teller Transitions in the ³⁷Cl(³He,t)³⁷Ar Reaction

Y. Shimbara^a, Y. Fujita^a, T. Adachi^a, G.P.A. Berg^b, H. Fujita^b, K. Fujita^b, K. Hatanaka^b, J. Kamiya^b, K. Kawase^b, K. Nakanishi^b, N. Sakamoto^b, Y. Sakemi^b, Y. Shimizu^b, S. Tameshige^b, M. Uchida^c, T. Wakasa^b, and M. Yosoi^c

^a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ^bResearch Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ^c Department of Physics, Kyoto University, Sakyo, Kyoto 606-8224, Japan

In charge exchange (CE) reactions at intermediate energies and at 0° , it is known that the cross sections are essentially proportional to the Gamow-Teller (GT) strengths B(GT) observed in β decays [1, 2]. However, exceptionally in transitions exciting $j_{\leq}^{+1}j_{\leq}^{-1}$ configurations in odd mass nuclei, it has been reported that the proportionality has a large ambiguity [3]. The A=37 nuclei are suited to investigate the question on this ambiguity because, in a naive shell model, valence nucleons are in a $j_{<}$ shell, i.e., the $d_{3/2}$ shell. Assuming that there is no isospin mixing, the B(GT) distributions should be the same in transitions from the ground state of ³⁷Cl to the excited states of ³⁷Ar and from that of ³⁷Ca to those of ³⁷K. If the cross sections in CE reactions are proportional to the B(GT) values, the distribution of the differential cross sections from the ${}^{37}\text{Cl}(p,n){}^{37}\text{Ar}$ or ${}^{37}\text{Cl}({}^{3}\text{He},t){}^{37}\text{Ar}$ reactions should be identical to the B(GT) distribution from the ${}^{37}{\rm Ca} \rightarrow {}^{37}{\rm K}$ β -decay. Both ${}^{37}{\rm Cl}(p,n){}^{37}{\rm Ar}$ [5] and ${}^{37}\text{Ca}(\beta_+){}^{37}\text{K}$ [6, 7, 8] experiments were intensively performed, because the data are important as a parameter to estimate the solar neutrino flux by a ³⁷Cl detector [4]. In deriving the B(GT) values from the ${}^{37}Cl(p,n){}^{37}Ar$, it was assumed that the observed cross section of the transition to the ground state of 37 Ar corresponded to the B(GT) value determined in the 37 Ar β -decay to the ground state of 37 Cl. The obtained B(GT) distribution was rather different from the results of the 37 Ca β -decay measurements. As the origin of the disagreement, it was pointed out that the proportionality was not valid in the ${}^{37}\text{Cl}(p,n){}^{37}\text{Ar}$ experiment especially for the ground state transition [6, 7]. Unfortunately, the (p, n) reaction data cannot be compared with the β -decay data on level-by-level base because of its poor resolution of 200-300 keV.

In order to realize level-by-level comparison, we performed a high-resolution (${}^{3}\text{He},t$) experiment. A 140 MeV/u ${}^{3}\text{He}$ beam from the RCNP Ring Cyclotron was dispersively transported by the WS beam line. The spectrometer Grand Raiden set at 0° was used for the momentum analysis of tritons. A newly developed foil target made by calcium chloride (${}^{40}\text{Ca}^{37}\text{Cl}_2$) and polyvinylalcohol (PVA) was used [9]. With the dispersion matching method compensating the energy spread of the beam, we achieved a resolution of 30 keV (FWHM), the world record resolution of the CE reactions at intermediate energies.

Our spectrum is compared with the $B(\mathrm{GT})$ distribution from the $^{37}\mathrm{Ca}$ β -decay experiment in Fig. 1. In the $^{37}\mathrm{Ca}$ β -decay data shown in the upper part, the $B(\mathrm{GT})$ in the IAS is not shown because of its large error due to the mixture of the Fermi strength. If we neglect the corresponding IAS in the $(^3\mathrm{He},t)$ spectrum, we can see similarities between these two figures. A closer look of the spectrum shows, however, that there are obvious disagreements over the error bars for the states in the 2-5 MeV region. Since the $(d^{+1}_{3/2}d^{-1}_{3/2})$ configuration is expected to be dominant at the lower excitations, it is suggested that the disagreements originate from the lack of proportionality.

Here we tentatively use a new normalization. The differential cross sections of the $^{37}\text{Cl}(^3\text{He},t)^{37}\text{Ar}$ measurement were normalized to the $^{37}\text{Ca} \rightarrow ^{37}\text{K}$ β -decay data by the total

strength in the region 5.05-8.65 MeV in which the contribution of the $(d_{3/2}^{+1}d_{5/2}^{-1})$ configuration was expected to be larger. The B(GT) values were integrated as a function of excitation energy and compared with that of the $^{37}\text{Ca} \rightarrow ^{37}\text{K}$ in Fig. 2, where the IAS was neglected because the ambiguity was large in both data of $^{37}\text{Cl}(^3\text{He},t)^{37}\text{Ar}$ and ^{37}Ca β decay. In order to make the curves match at 5.05-8.65 MeV in Fig. 2, the y axis of the $^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ was moved upward. With this shift, these two curves are in good agreement, indicating that the proportionality between the cross sections and the B(GT) values in the $(^3\text{He},t)$ reaction is good, probably owing to the larger fraction of the $(d_{3/2}d_{5/2}^{-1})$ configuration in the higher excitation region. Additionally, we see little effects by the isospin mixing as for the averaged strengths. On the other hand, a small gap, which was about 5% of the integrated value up to 8.65 MeV, appeared at 0 MeV. The gap indicates that, at lower excitation region, the fraction of the $(d_{3/2}^{+1}d_{3/2}^{-1})$ configuration is rather large and the proportionality becomes ambiguous.

Through the present study, we find that the (${}^{3}\text{He},t$) data taken at intermediate energy and 0° are useful for the extraction of the B(GT) values in a wider excited-energy region. At the same time one should take into account the lack of proportionality between the cross section and B(GT) in $j_{<} \rightarrow j_{<}$ transitions.

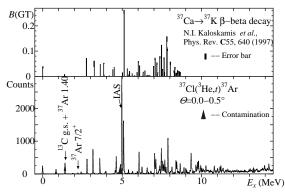


Figure 1: Comparison of the $^{37}\mathrm{Cl}(^{3}\mathrm{He},t)^{37}\mathrm{Ar}$ energy spectrum and the $B(\mathrm{GT})$ distribution from $^{37}\mathrm{Ca}$ β -decay. The vertical scales are adjusted so that the 5.11 MeV states have the same height.

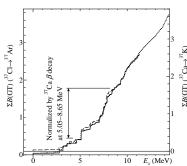


Figure 2: Integral $B(\mathrm{GT})$ distributions from the $^{37}\mathrm{Cl} \to ^{37}\mathrm{Ar}$ and $^{37}\mathrm{Ca} \to ^{37}\mathrm{K}$ GT transitions. The $B(\mathrm{GT})$ values extracted from $^{37}\mathrm{Cl}(^3\mathrm{He},t)^{37}\mathrm{Ar}$ are normalized to the $^{37}\mathrm{Ca}$ β -decay data in the region 5.05-8.65 MeV. The solid line shows the strength only of the discrete states in the $^{37}\mathrm{Cl}(^3\mathrm{He},t)^{37}\mathrm{Ar}$ spectrum, while doted line shows the strength including the continuous part of the spectrum. The dashed line shows the strength of $^{37}\mathrm{Ca} \to ^{37}\mathrm{K}$ β -decay.

References

- [1] T.N. Taddeucci, et al., Nucl. Phys. **A469**, 125 (1987).
- [2] Y. Fujita et al., Phys. Rev. C59, 90 (1999).
- [3] J.W. Watson, et al., Nucl. Phys. **A687**, 32c (2001).
- [4] R. Davis, et al., Phys. Rev. Lett. **20** 1205 (1968).
- [5] J. Rapaport, et al., Phys Rev. Lett. 47, 1518 (1981).
- [6] A. Garcia, et al., Phys. Rev. Lett. 67, 3654 (1991).
- [7] W. Trinder et al., Nucl. Phys. **A620**, 191 (1997).
- [8] N.I. Kaloskamis, et al., Phys. Rev. C55, 640 (1997).
- [9] Y. Shimbara *et al.*, OULNS Annual Report, 2001, p.100. and Nucl. Instr. Meth. Phys. Res. A, to be submitted.