Search for Alpha Cluster Condensation in ¹⁶O

T. Wakasa, ^a K. Fujita, ^b K. Hatanaka, ^b M. Itoh, ^b J. Kamiya, ^b H. Sakaguchi, ^c N. Sakamoto, ^b Y. Sakemi, ^b Y. Shimizu, ^b S. Terashima, ^c M. Uchida, ^b Y. Yasuda, ^c H. Yoshida, ^b and M. Yosoi^c

^aDepartment of Physics, Kyushu University, Higashi, Fukuoka 812-8581, Japan
^bResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
^dDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

Recently Tohsaki, Horiuchi et al. [1] proposed a new α cluster wave function in order to investigate α -particle Bose condensed states in 16 O. The calculation suggests that there would be a 4α -cluster condensed 0^+ state at $E_x{\simeq}14.0$ MeV. This α -cluster condensed state has a large root-mean-square (rms) radius of 3.97 fm compared with 2.73 fm for the ground state in 16 O. A large rms value indicates that this 0^+ state corresponds to a very dilute system which is only about a fifth of the experimental ground state density. The fact that the α -cluster condensed 0^+ state is of the dilute density is in agreement with nuclear matter calculations where it was shown that a condensate of α -like particles is possible only in matter with $\rho < 0.03$ fm⁻³.

We searched this 4α -cluster condensed state in 16 O via the 16 O(α, α') scattering at E_{α} =400 MeV. We have found a new resonance-like state at E_{x} \simeq 13.5 MeV with Γ \simeq 800 keV. The measured angular distribution is consistent with that for J^{+} =0⁺. Thus this new state can be considered as a theoretically predicted 4α -cluster condensed 0⁺ state.

This experiment was performed under Program Number E189.

References

[1] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).