Glueball Properties at T' > 0 from SU(3) Anisotropic Lattice QCD
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Hadrons are relativistic bound states of quarks and gluons. Hence, at nonzero tempera-
ture/density even within the confinement phase, we expect that they change their properties
as a consequence of the changes of the QCD vacuum such as the reduction of the string
tension and the partial chiral restoration. In fact, a number of effective models predict the
(pole)mass reductions of various hadrons of more than a few hundred MeV near the critical
temperature T, of the QCD phase transition [1, 2, 3, 4]. Recently, motivated by these studies,
quenched anisotropic lattice QCD has been used to measure the pole mass of various hadrons
at finite temperature [5, 6, 7], reporting the profound results that, for both the light and
heavy gg-mesons, no significant change has been observed below T, while, for the glueball,
the significant pole mass reduction of about 300 MeV is observed near T.. In all of these
studies, the narrowness of the bound state peak is assumed. However, since at T # 0, each
bound state peak acquires a non-vanishing thermal width through the interaction with the
heatbath, it is desirable to be taken into account. Here, we report the advanced analysis
of the thermal 07 glueball based on SU(3) quenched anisotropic lattice QCD taking into
account the effect of the thermal width.

Generally, to extract physical observables such as mass and width, we have to resort to

the spectral representation of the two-point correlator G(t) = Z(B8) 'tr {e_/BHqS(t)qS(O)} as

_ [P dw  p(w)
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where H is the QCD Hamiltonian, Z = tr(e #H), ¢(t) = e ¢(0)e ¥ is the zero-momentum
projected glueball operator in the imaginary-time Heisenberg picture, and p(w) is the spectral
function. Appropriate smearing on ¢(t) is understood to maximize the overlap to the glueball
state. To extract the physical observables, we parameterize p(w) and use Eq. (1) to fit G(¥)
generated by lattice QCD. In Refs. [5,6,7], the narrow-peak ansatz has been adopted, where
p(w) is parameterized as p(w) = 2w A (6(w — m) — §(w + m)) +- - - with the two fit parameters
A and m corresponding to the overlap and the pole mass, respectively.

To respect the thermal width, we recall that p(w) is the imaginary part of the retarded
Green function Gg(w), i-e., p(w) = —2Im (Gr(w)). At T = 0, bound state poles of Gr(w) are
located on the real w-axis. With increasing T', they begin to move off the real axis into the
complex w-plane. Thus the influence of each complex pole in p(w) can be parameterized with
a Lorentzian as p(w) = 2w A (0r(w — wo) — dr(w + wp)) + - - -, where A, wy and I" are used as
fit parameters corresponding to the overlap, the center and the thermal width, respectively.
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function as the Breit-Wigner type.

de(x) = 1Im( L ) denotes a smeared delta function. We refer to the corresponding fit
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Figure 1: The pole mass mg(T') from the narrow-peak ansatz, the center wy(7") and the
thermal width I'(7") from the Breit-Wigner ansatz. The vertical dotted lines indicate the
critical temperature T, ~ 280 MeV. Appropriate smearings are understood.

The numerical results are shown in Fig. 1. We use 5000 to 9900 gauge configurations
generated by the Wilson action with 8 = 6.25 and the renormalized anisotropy & = as/a; = 4.
Whereas the narrow-peak ansatz indicates the significant pole mass reduction of about 300
MeV, the Breit-Wigner ansatz indicates the significant thermal width broadening of more
than 300 MeV with a modest reduction in the peak center. These two analysises thus lead to
the two different physical implications. Note that, due to the biased factor “sinh(Bw/2)” in
Eq. (1) which enhances the smaller w region of p(w), thermal width is effectively seen as the
reduced pole mass in the narrow-peak ansatz. Hence, in the case of the glueball, the thermal
effect is most probably the thermal width broadening.
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