Faddeev-Yakubovsky Calculation Above the 4-body Break-Up Threshold
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The Schédinger and Lippmann-Schwinger (LS) equations are equivalent within the non-
relativistic quantum mechanics. The former has a difficulty to consider the boundary con-
dition in a continuous state on three- or more-particle system. The latter has a difficulty to
treat a singularity of the Green’s function. Both difficulties are equivalent.

We employ the 4-body Faddeev-Yakubovsky (FY) equation based on the LS equation, due
to an advantage that the same formalism is available in both of the discrete and continuous
states. In the ppnn 4-nucleon system, as an example, there are 3N + N, dd, dpn, and 4-
body break-up thresholds, neglecting the Coulomb force. The nature of the singularities
from the 3N 4+ N and dd thresholds are the same. At lower energies than the dpn threshold,
we can solve the FY equation using the technique of principal value and residue[l, 2]. In

the case between the dpn and 4-body break-up thresholds, contour deformation method is
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energy of the system, p is the momentum, and p is the reduced mass. In both technique
mentioned above, first one takes the limiting value of € — 0 analytically, next one avoids the
integration pass on the complex plane. It is difficult to apply it at energies above the 4-body
break-up threshold, then nobody have succeeded to solve the FY equation.

Recently two of the authors (HK and YK) found the Complex Energy Method (CEM)[5]
as follows. First we solve the FY equation with finite e. There are no singularities on the
real momentum axis, then it is easy to solve. After obtaining several solutions with various
e’s, we takes the limiting value of € — 0 numerically with an analytical continuation method.

No singularities does not mean no effects from them. For instance, there is a pole in the
2-body Green’s function. In the finite € case, the function changes from large positive to

large negative values around the pole. The domain of the mesh points are —1 < z < 1 in the
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applicable[3, 4]. The Green’s function is expressed as Gy = , where FE is

Gauss-Legendre method, and one usually convert it to 0 < p < oo using p = A
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A is a parameter defined empirically for quicker convergence. If f(z) is an increasing function
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this work we employ the function f(x) = 1B define A as p to be the pole when z = 0,

and define B empirically for quicker convergence.

Present work aims to demonstrate that we can obtain enough converged solutions of the
FY equation above the 4-body break-up threshold. We apply CEM to the 4-nucleon system
as the first attempt and employ the Yamaguchi potential[6, 7, 8] as the N-N interaction for
1Sy and 3S;-3D; states. Merely the total J and parity 1/2% state is inputted in the [3+1]
subsystem, and all arrowed channel which both of the two pairs to be 'Sy or 3S;-3D; states
in the [242] subsystem. These subamplitudes are expanded in a separable form using the
energy dependent pole expansion[9] method and we take 4 ranks. As for the 4-body system

and its range is —1 < f(z) < 1, we may use p = for a converting function. In



we calculate only for 07 of total .J and parity and total isospin 0 state. The Coulomb force
is ignored. As for the analytical continuation, we employ the point method[10].

We checked the convergence of present calculations at 1MeV above from the dd threshold,
1MeV below from the 4-body break-up threshold, and 12MeV above from 4-body break-up
threshold. Table 1 is a demonstration of convergence behavior in the last case. In all cases
we obtain converged solutions by 4 or 5 digits.

Next schedule is to check convergence by the separable expansion in 3-body and [2+2]
subsystems, or to improve the calculation code to apply some technique without separable
expansion. After doing this, we’d like to increase the state channels for discussing Physics.

Table 1: Scattering amplitudes at 12MeV above from 4-body break-up threshold. We set
e =0.75, 1.0, 1.25, ..., 4.25MeV. Column [A] shows numerical results for p>H elastic channel,
[B] for dd to p*H or reversed reaction channel, and [C] for dd elastic channel. All of the initial
and final channels are in S-state. The columns expressed as “Re” and “Im” are the real and
imaginary parts of the numerical on-shell amplitudes with unit fm~!, and the column “n”
indicates the number of solutions inputted into the point method, in order of £ from the

smallest. The bottom row expressed as “conv.” indicates the converged value.

Al [B] ©
n Re Im n Re Im n Re Im
1 -0.342769 0.694761 1 -0.507264 0.327950 1 0.105518 0.459786
2 -0.328530 0.654652 2 -0.548204 0.360900 2 0.191365 0.367360
3  -0.332216 0.643763 3 -0.535917 0.359346 3  0.223403 0.347832
4 -0.332067 0.644817 4 -0.534384 0.359050 4 0.223384 0.348151
5 -0.332134 0.644706 5 -0.534492 0.358726 5 0.222945 0.347691
6 -0.332112 0.644977 6 -0.534727 0.358841 6 0.223425 0.348507
7 -0.331885 0.644964 7 -0.533468 0.359478 7 0.223490 0.348477
8 -0.331893 0.644958 8 -0.534110 0.358765 8 0.223499 0.348237
9 -0.331891 0.644963 9 -0.534213 0.358803 9 0.223543 0.348190

10 -0.331888  0.644945 10 -0.534188  0.358847 10 0.223520 0.348229
11 -0.331885 0.644943 11 -0.533989  0.358687 11 0.223303  0.347957
12 -0.331888  0.644947 12 -0.534219 0.358676 12 0.223232  0.348764
13 -0.331879  0.644946 13 -0.534201 0.358710 13 0.223325 0.348618
14 -0.331881 0.644948 14 -0.534200 0.358696 14 0.223323  0.348633
15 -0.331867 0.644948 15 -0.534198 0.358726 15 0.223325 0.348616
conv. -0.3319 0.64495 | conv. -0.53420 0.3587 conv. 0.2233 0.3486
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