E. Uzu^a, H. kamada^b, and Y. Koike^{c,d}

^a Tokyo University of Science, Noda, Chiba 278-8510, Japan ^bKyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan ^cHosei University, Chiyoda-ku, Tokyo 102-8160, Japan d Center of Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan

The Schödinger and Lippmann-Schwinger (LS) equations are equivalent within the nonrelativistic quantum mechanics. The former has a difficulty to consider the boundary condition in a continuous state on three- or more-particle system. The latter has a difficulty to treat a singularity of the Green's function. Both difficulties are equivalent.

We employ the 4-body Faddeev-Yakubovsky (FY) equation based on the LS equation, due to an advantage that the same formalism is available in both of the discrete and continuous states. In the ppnn 4-nucleon system, as an example, there are 3N + N, dd, dpn, and 4body break-up thresholds, neglecting the Coulomb force. The nature of the singularities from the 3N + N and dd thresholds are the same. At lower energies than the dpn threshold, we can solve the FY equation using the technique of principal value and residue[1, 2]. In the case between the dpn and 4-body break-up thresholds, contour deformation method is applicable [3, 4]. The Green's function is expressed as $G_0 = \frac{1}{E + i\varepsilon - p^2/2\mu}$, where E is energy of the system, p is the momentum, and μ is the reduced mass. In both technique mentioned above, first one takes the limiting value of $\varepsilon \to 0$ analytically, next one avoids the integration pass on the complex plane. It is difficult to apply it at energies above the 4-body break-up threshold, then nobody have succeeded to solve the FY equation.

Recently two of the authors (HK and YK) found the Complex Energy Method (CEM)[5] as follows. First we solve the FY equation with finite ε . There are no singularities on the real momentum axis, then it is easy to solve. After obtaining several solutions with various ε 's, we takes the limiting value of $\varepsilon \to 0$ numerically with an analytical continuation method.

No singularities does not mean no effects from them. For instance, there is a pole in the 2-body Green's function. In the finite ε case, the function changes from large positive to large negative values around the pole. The domain of the mesh points are $-1 \le x \le 1$ in the Gauss-Legendre method, and one usually convert it to $0 \le p < \infty$ using $p = A \frac{x+1}{x-1}$, where A is a parameter defined empirically for quicker and A is a parameter defined empirically for quicker convergence. If f(x) is an increasing function and its range is $-1 \le f(x) \le 1$, we may use $p = A \frac{f(x) + 1}{f(x) - 1}$ for a converting function. In this work we employ the function $f(x) = \frac{x + Bx^3}{1 + B}$, define A as p to be the pole when x = 0,

and define B empirically for quicker convergence.

Present work aims to demonstrate that we can obtain enough converged solutions of the FY equation above the 4-body break-up threshold. We apply CEM to the 4-nucleon system as the first attempt and employ the Yamaguchi potential [6, 7, 8] as the N-N interaction for ${}^{1}S_{0}$ and ${}^{3}S_{1}$ - ${}^{3}D_{1}$ states. Merely the total J and parity $1/2^{+}$ state is inputted in the [3+1] subsystem, and all arrowed channel which both of the two pairs to be ¹S₀ or ³S₁-³D₁ states in the [2+2] subsystem. These subamplitudes are expanded in a separable form using the energy dependent pole expansion [9] method and we take 4 ranks. As for the 4-body system we calculate only for 0^+ of total J and parity and total isospin 0 state. The Coulomb force is ignored. As for the analytical continuation, we employ the point method[10].

We checked the convergence of present calculations at 1MeV above from the dd threshold, 1MeV below from the 4-body break-up threshold, and 12MeV above from 4-body break-up threshold. Table 1 is a demonstration of convergence behavior in the last case. In all cases we obtain converged solutions by 4 or 5 digits.

Next schedule is to check convergence by the separable expansion in 3-body and [2+2] subsystems, or to improve the calculation code to apply some technique without separable expansion. After doing this, we'd like to increase the state channels for discussing Physics.

Table 1: Scattering amplitudes at 12MeV above from 4-body break-up threshold. We set $\varepsilon = 0.75, 1.0, 1.25, ..., 4.25$ MeV. Column [A] shows numerical results for p^3 H elastic channel, [B] for dd to p^3 H or reversed reaction channel, and [C] for dd elastic channel. All of the initial and final channels are in S-state. The columns expressed as "Re" and "Im" are the real and imaginary parts of the numerical on-shell amplitudes with unit fm⁻¹, and the column "n" indicates the number of solutions inputted into the point method, in order of ε from the smallest. The bottom row expressed as "conv." indicates the converged value.

[A]			[B]			[C]		
n	${ m Re}$	${ m Im}$	n	${ m Re}$	${ m Im}$	n	${ m Re}$	Im
1	-0.342769	0.694761	1	-0.507264	0.327950	1	0.105518	0.459786
2	-0.328530	0.654652	2	-0.548204	0.360900	2	0.191365	0.367360
3	-0.332216	0.643763	3	-0.535917	0.359346	3	0.223403	0.347832
4	-0.332067	0.644817	4	-0.534384	0.359050	4	0.223384	0.348151
5	-0.332134	0.644706	5	-0.534492	0.358726	5	0.222945	0.347691
6	-0.332112	0.644977	6	-0.534727	0.358841	6	0.223425	0.348507
7	-0.331885	0.644964	7	-0.533468	0.359478	7	0.223490	0.348477
8	-0.331893	0.644958	8	-0.534110	0.358765	8	0.223499	0.348237
9	-0.331891	0.644963	9	-0.534213	0.358803	9	0.223543	0.348190
10	-0.331888	0.644945	10	-0.534188	0.358847	10	0.223520	0.348229
11	-0.331885	0.644943	11	-0.533989	0.358687	11	0.223303	0.347957
12	-0.331888	0.644947	12	-0.534219	0.358676	12	0.223232	0.348764
13	-0.331879	0.644946	13	-0.534201	0.358710	13	0.223325	0.348618
14	-0.331881	0.644948	14	-0.534200	0.358696	14	0.223323	0.348633
15	-0.331867	0.644948	15	-0.534198	0.358726	15	0.223325	0.348616
conv.	-0.3319	0.64495	conv.	-0.53420	0.3587	conv.	0.2233	0.3486

References

- [1] E. Uzu, H. Kameyama, S. Oryu, and M. Tanifuji, Few-Body Systems 22, 65 (1997).
- [2] E. Uzu, S. Oryu, M. Tanifuji, Few-Body Systems Suppl. 12, 491 (2000).
- [3] A.C. Fonseca, Nucl. Phys. **A631**, 675c (1998).
- [4] A.C. Fonseca, Phys. Rev. Lett. 83, 4021 (1999).
- [5] H. Kamada, Y. Koike and W. Glöckle, Prog. Theor. Phys. 109, 869 (2003).
- [6] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
- [7] Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. **95**, 1635 (1954).
- [8] A.C. Phillips, Nucl. Phys **A107**, 209 (1968).
- [9] S.A. Sofianos, N.J. McGurk, and H. Fiedelday, Nucl. Phys. A318, 295 (1979).
- [10] L. Schlessinger, Phys. Rev. **167**, 1411 (1968).