L>0 Excitations in $\Delta J^{\pi}=1^+$ States at 0° Suggested from $^{37}{\rm Cl}(^3{\rm He},t)^{37}{ m Ar}$ Measurements

Y. Shimbara, Y. Fujita, T. Adachi, B.A. Brown, H. Fujita, K. Fujita, K. Hatanaka, K. Kawase, K. Nakanishi, N. Sakemi, Y. Shimizu, Y. Tameshige, and M. Yosoi, E.

^aResearch Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan.
 ^bDepartment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
 ^cNSCL, Michigan State University, East Lansing, Michigan 48824, USA.
 ^dSchool of Physics, University of Witwatersrand, Johannesburg, 2050, South Africa.
 ^eDepartment of Physics, Kyoto University, Sakyo, Kyoto 606-8224, Japan.

A charge-exchange (CE) reaction at an intermediate energy is regarded as a powerful tool to study Gamow-Teller (GT) transitions [1]. At the energy above 100 MeV/nucleon and at 0°, the projectile-target nucleon interaction is dominated by the $V_{\sigma\tau}$ term. Since the cross section caused by this L=0, $\sigma\tau$ interaction is essentially dominant at 0°, the differential cross section is related with the GT transition strength of the β decay, and is proportional to the B(GT) value [2]. Recent systematic studies at RCNP have shown that a (³He, t) reaction has this proportionality like a (p,n) reaction [3, 4]. A combination with the magnetic spectrometer made the (³He, t) reaction a good spectroscopic tool to study individual GT transitions with a high resolution.

The differential cross sections of the L>0 components at 0° are small but they are not zero. Particularly the L=2 component can mix with the GT states of $\Delta J^{\pi}=1^{+}$. Watson et al. [5] insisted that the tensor term, which behaves like L=2, influences particularly the GT transition of $(j_{<}^{+1}, j_{<}^{-1})$, in which the proportionality is exceptionally broken. Therefore, it is important to study whether the cross section of GT states seen at around 0° is mixed with the L=2 component.

Since the differential cross sections of GT transitions are dominated by the L=0 component, to see the L=2 part is usually difficult. The 37 Cl is an interesting target to study the L=2 component mixed with the GT transition, because the transition of $(d_{3/2}^{+1}, s_{1/2}^{-1})$ can contribute to the $\Delta J^{\pi}=1^+$ transition at the lower excited energy region in the daughter nucleus 37 Ar. The $(d_{3/2}^{+1}, s_{1/2}^{-1})$ transition is sensitive only to L=2 but insensitive to L=0. Therefore, it is expected that the angular distribution is affected from the L=2 component if the GT state include the $(d_{3/2}^{+1}, s_{1/2}^{-1})$ configuration.

In E158 and E208, we performed $^{37}\text{Cl}(^3\text{He},t)^{37}\text{Ar}$ measurements at 140 MeV/nucleon by using the high resolution spectrometer Grand Raiden. The self-supporting ^{37}Cl target foil developed by Shimbara *et al* [6] was installed in the scattering chamber. Grand Raiden was placed at 0° , 2.5° , 4° and 6° . The highest resolution was 35 keV (FWHM) in the obtained spectra.

The spectra at 0° and 4° are shown in Fig. 1. The ordinates of these spectra are normalized so that the 2.80 MeV state has the same height. This state is expected to have L=0 nature by the shell model and DWBA calculations. The J^{π} values are given on the basis of Ref. [7]. The state at 4.99 MeV is the IAS. Ten GT states are shown with the excitation energies in Fig. 1. The GT state at 1.41 MeV in the 0° spectrum is completely hidden by the state coming from 13 C included in the target.

We found that the peak at 3.60 MeV increases compared to the other GT states at 4° , which suggests that this peak has a strong L=2 component. On the other hand, the IAS

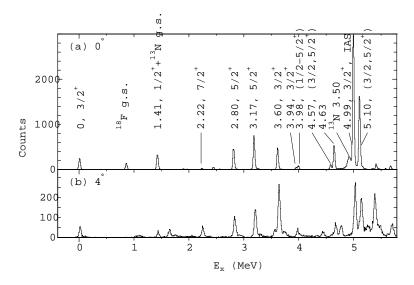


Figure 1: The ${}^{37}\text{Cl}({}^{3}\text{He},t){}^{37}\text{Ar}$ spectra at (a) $\Theta_{\text{lab}}=0^{\circ}$ and (b) 4° .

Table 1: The Z coefficients calculated by code OXBASH for primal configurations.

$E_x(\mathrm{MeV})^a$	$E_x({ m MeV})^b$	$2J^{\pi}$	$(1d_{3/2}^{+1}, 1d_{5/2}^{-1})$	$(1d_{3/2}^{+1}, 1d_{3/2}^{-1})$	$(1d_{3/2}^{+1}, 2s_{1/2}^{-1})$
0.0	0.0(0)	3^+	-0.04215	-0.24416	0.06266
2.846	2.797(4)	5^+	0.04239	0.40413	-0.10303
3.460	3.600(4)	3^+	-0.09171	-0.03978	-0.47745

^aShell model

decreases compared to the GT states, suggesting that the L=2 contribution is small.

A shell model calculation was performed using the code OXBASH with W interaction. The calculation reproduced the same J^{π} values as the present data for the lower five GT states up to 3.60 MeV. In these states the major component is $(d_{3/2}^{+1}, d_{3/2}^{-1})$. The Z coefficients, which corresponding to the transition amplitude, for three representative states are shown in Tab. 1. We see that the state at 3.46 MeV have particularly large amplitude of $(d_{3/2}^{+1}, s_{1/2}^{-1})$. It is consistent with the fact that the angular distribution of 3.60 MeV increases compared to the other GT states at 4°. We suspect for some GT states that the contribution of the L=2 component cannot be neglected in the differential cross section even at 0°.

References

- [1] F. Osterfeld, Rev. Mod. Phys. **64** (1992) 491.
- [2] T.N. Taddeucci, et al., Nucl. Phys. **A469**, (1987) 125.
- [3] Y. Fujita et al., Phys. Rev. C59, (1999) 90.
- [4] Y. Fujita et al., Phys. Rev. C67, (2003) 064312.
- [5] J.W. Watson et al., Nucl. Phys. **A687**, (2001) 32c.
- [6] Y. Shimbara et al., Nucl. Instr. Meth. A **522** (2004) 205.
- 7 P.M. Endt, Nucl. Phys. **A521**, (1990) 1; P.M. Endt, *ibid.* **A633**, (1998) 1.

 $[^]b$ Empirical data