Role of the relativistic RPA states with negative energy
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Phenomenological relativistic field theories based on hadrons, referred to as quantum
hadrodynamics (QHD)[1], have been successful in describing the bulk and single-particle
properties of nuclei in the mean field approximation. Nuclear excitations also have been
investigated by QHD using the relativistic random-phase approximation(RRPA) with the
MFT basis[2, 3]. In the previous calculations in Refs. [2, 4], where the spectral method is
used to solve the RRPA equation, the configuration space is restricted to ordinary particle-
hole pairs. This seems a reasonable approximation at first sight, since the excitation of the
negative-energy states in the Dirac sea to the positive-energy states has an unperturbed
energies more than 1 GeV. Due to the huge binding of the negative-energy states in the QHD
model, however, it was found that the negative-energy states are needed in RRPA to preserve
current conservation for the transition currents, to decouple the spurious translational states
and to reproduce the excitation energies and transition form factors obtained by the non-
spectral RRPA in which the negative-energy contribution is included automatically[5, 6].

The resulting RRPA equation with configuration including negative-energy states of MF'T
also has the eigenstates with the negative energy, which have never been discussed. The
contribution from these states represents the blocking effect of the nucleon - antinucleon
creation due to the states occupied by the spectator nucleon. Therefore, these RRPA states
are quite important to construct a completeness. In this study, we discuss the property of
the RRPA states with negative energy.

The multipole form factors are defined by the Fourier transform of transition current
densities as

(| Mx(I|T) = /dfjA(qx)(I'IIYA(Qx)QN(f)III), (1)
(Il = /dij(qw)U'II?AL(Qz)-fN(f)III), (2)

where j)(gz) is a spherical Bessel function. Y}\L is a vector spherical harmonics, and A is
the multipolarity of transition. The longitudinal and transverse form factors for the 1~ state
with the transition energy of 1076 MeV is shown in Fig. 1(a). The transverse form factor
is an order of magnitude larger than that of the positive-energy 1~ state shown in Fig. 1(b).
It is also seen that the form factors of the negative-energy states have a peak in a very lower
momentum than the corresponding transition energy, because the states are bound strongly.
It would be interesting to investigate the transverse response function in order to observe the
strong binding of antinucleon which is the essential feature of the phenomenological QHD
model.

Next, we present the energy-weighted sum of the reduced matrix element B(FE)) calcu-
lated by the relativistic nuclear model. The result for 0 is shown in Table I, where we
take the summation over only the positive-energy states in the RRPA excitation. Both in HS
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Figure 1: Nuclear form factors for the isoscalar 1~ state obtained in the RRPA calculation with HS: (a)
the 1076 MeV highest negative-energy state and (b) the 8.5 MeV lowest positive-energy state in °0. The
longitudinal and transverse form factors (I'||M1(q)||I), {I'||T10(q)||I}, and (I'||T12(q)||I) are displayed by the
solid, dotted, and dashed curves, respectively.

Table 1: Energy-weighted sums of B(E)) over positive-energy RRPA states in unit of e?b*-MeV. The
classical EWSR values [7] with and without effective mass are also shown for comparison. The effective mass
m}y is calculated by MFT with the HS parameter set.

EX  Present(HS) Present(NL — SH) Classical(my)® Classical(m3y)®

EQP 0.0416 0.0394 0.0350 0.0460
E1° 0.8052 0.7835 0.5940 0.8637
E2 0.5211 0.4940 0.4372 0.5745

@ The radial moments (), in the classical EWSR are calculated with the charge distribution
from the MFT with parameter set HS.

b The EO operator is defined as O(E0)=%", r2/\/Ar.

¢ The E1 operator is defined as O(E1)=}"; —1/213rY7,.

and NL-SH, the present results are somewhat larger than the classical energy-weighted sum
rule(EWSR) values of Ref. [7] in any multipole states. The reason has been presumed as due
to the effective mass m}; in Ref. [5]. Certainly, our EWSR agrees better with the classical
EWSR value when the effective mass is used as shown in the fourth column of Table I. In
addition, this role of the effective mass explains the result that EWSR values in HS become
larger than those in NL-SH; HS provides smaller effective mass as compared to NL-SH in the
nuclear matter calculation.

Finally, we mention that since the charge operator of the Dirac current commutes with the
single-particle Hamiltonian of nucleus, the EWSR value vanishes in the present calculation
if the vacuum polarized states with negative energies are also taken into account in the sum.
This is the result that the RRPA states satisfy a completeness relation by including the
negative-energy states.
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