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Near the critical temperature T, one expects various onsets of the deconfinement tran-
sition in the QCD vacuum such as the reduction of the string tension and the partial chiral
restoration. As a consequence, some hadrons are expected to exhibit the pole-mass reduc-
tion near 7., as suggested by effective-model studies[1, 2, 3, 4]. Indeed, these changes are
considered as important precritical phenomena of the QCD phase transition in RHIC exper-
iments, and corresponding lattice QCD calculations were attempted at the quenched level
recently[5, 6, 7, 8]. In this paper, we consider 0" glueball, whose pole-mass reduction is
suggested by an effective model based on the dual Meissner picture of color confinement[4].

In general, to study the pole mass of a hadron in lattice QCD, one first constructs a
temporal correlator as G(7) = (¢(7)$(0)), and then resorts to its spectral representation as

G(r) = /O K (7, w) A(w), (1)

where
cosh(w(B/2 — 1))
sinh(fw/2) ’ @)

B =1/T, and A(w) is the spectral function with its spatial momentum projected to zero, i.e.,
A(w) = A(w,7 = 0). Each peak position of A(w) corresponds to a pole mass of a hadron at
T > 0. Usually, to extract A(w) from G(7), one adopts an Ansatz to perform a fit analysis.
The most popular Ansatz is the delta function, which is justified as long as the peak is
sufficiently narrow. At T' > 0, even a bound state may acquire a thermal width through
the interaction with the heat bath, which can be considered with an advanced Breit-Wigner
Ansatz[8]. Although the latter is rigid at low temperature, the shape of the spectral function
may become complicated near and beyond T.. In this case, it may be less trivial to figure
out a proper Ansatz. Hence, it is desirable to perform the maximum entropy analysis of the
glueball correlator at finite temperature[9], because it provides us with a numerical procedure
to reconstruct A(w) directly from lattice QCD Monte Carlo results[10, 11].

The glueballs are known to give only negligibly weak contributions to the ordinary
plaquette-plaquette correlator. To overcome this, we adopt a spatially extended glueball
operator generated by the smearing method with a p of suitable size[8]. Note that the smear-
ing method has a shortcoming, that is, it may create an unphysical bump in the spectral
function. However, since the actual low-lying glueball is a definite bound state in quenched
QCD below T, the problem of unphysical bump is not serious. This is because the pole
position in the complex w plane is unaffected by a particular choice of the operators[8].

We reconstruct A(w) for the smeared glueball correlator normalized as G(7 = 0) = 1. We
adopt the Shannon-Jaynes entropy as

S= /Ooo [A(w) —m(w) — A(w) log (Mﬂ ) (3)

m(w)

K(t,w) =

where m(w) is real and positive, referred to as the default model function. m(w) is required
to reproduce the asymptotic behavior of A(w) as w — co. We adopt the O(al) perturbative



expression as
m(w) = Noo' exp { ~(wp)*/4} )

where the normalization factor N is determined to mimic G(7 = 0) = 1, i.e.,
o
1= / dwK (17 = 0,w)m(w). (5)
0

In Fig.1, we show the reconstructed spectral functions of the lowest 07T glueball at
T = 130,253, and 275 MeV. We use 5,500 to 9,900 gauge configurations generated by Wilson
action with S, = 6.25 and the renormalized anisotropy & = as/a; = 4. The critical tem-
perature is estimated as T, ~ 280 MeV from Polyakov loop susceptibility. Since the error
bar estimated by following Ref.[11] turns out to be unreasonably small, we do not show it to
avoid unnecessary confusion. For a reasonable estimate, the jackknife error estimator should
be used. In Fig.1, we see the tendency that the peak becomes broader with increasing tem-
perature below T¢, which is consistent with the Breit-Wigner analysis of the thermal glueball
correlator[8].
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Figure 1: Reconstructed spectral functions of the lowest 0™ glueball at T' = 130, 253, and
275 MeV.



