Energy dependence of A_{xx} discrepancy in pd radiative capture

T. Kudoh¹, K. Sagara¹, T. Wakasa¹, M. Shiota¹, S. Shimomoto¹, M. Tomiyama¹, H. Ohira¹, K. Hatanaka², Y. Sakemi², A. Tamii², H. P.Yoshida², Y. Shimizu², K. Fujita², Y. Tameshige² and H. Kuboki³

¹Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan ²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ²Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan

In our previous experiment on pd radiative capture at $E_d = 200 \text{ MeV}$ [1], we found (1) A_{xx} largely disagrees with theoretical predictions even if three-nucleon force is introduced and (2) A_{xx} is nearly equal to A_{yy} contrary to theoretical predictions. At 17.5 MeV [2], we found (1) A_{yy} and A_y are fairly well reproduced by calculations and (2) A_{xx} is nearly equal to A_{yy} . From these facts we assume that A_{xx} and A_{yy} are nearly the same at any energy, whereas calculated A_{xx} and A_{yy} are nearly the same at low energy and largely different at higher energy. To examine the assumption, we made a new pd capture experiment at $E_d = 140 \text{ MeV}$ at RCNP.

Experimental setup was nearly the same as the previous one at 200 MeV: A vertically-polarized d-beam and an unpolarized d-beam were accelerated alternately, and the beam polarizations (p_{yy} and p_y) were measured during the experiment by a beam-line polarimeter using pd scattering. The beam was incident on a liquid hydrogen target of 11 mg/cm² (=1.5 mm) in thickness having aramide window foils of 0.6 mg/cm² in thickness. The target thickness was monitored by detecting scattered d and recoil p from the target in coincidence in the scattering chamber.

From pd radiative capture, ³He is recoiled out at forward angle within 3.8° in the laboratory frame . Recoil ³He were detected using LAS (Large Acceptance Spectrometer) which has an acceptance of $\pm 3.4^{\circ}$ in the horizontal plane and of $\pm 5.7^{\circ}$ in the horizontal plane.

First, LAS was set at 0° and the magnetic field of LAS dipole was set to guide the d-beam to LAS Faraday cup. Happily, LAS in the magnetic field could analyze all the ³He recoils from pd capture. By using a vertical slit for ³He recoils, angular distribution of pd capture A_{xx} was measured in one shot. Second, LAS was set at 2.5° , and the d-beam was stopped on the Faraday cup in the scattering chamber. By using a horizontal slit for ³He recoils, angular distribution of A_y , A_{yy} , and cross section of pd capture was measured.

Preliminary experimental results at 140 MeV are shown in Figure 1. Analysis of A_y data is in progress. Large disagreement in A_{xx} between experiment and calculations [3] was found also at this energy. Energy dependence of A_{xx} and A_{yy} at $\theta_{cm} = 90^{\circ}$ is shown in Figure 2. The figure indicates that relation $A_{xx} \approx A_{yy}$ holds in a wide energy range below, say, 300 MeV, and that A_{xx} anomaly exists above 60 MeV.

Introduction of 2π -exchange 3NF can not explain the A_{xx} anomaly. A possible origin of the A_{xx} anomaly and the $A_{xx} \approx A_{yy}$ relation may be short-range force. Calculatons with heavy-meson exchange 3NF's may give some hints to solve the problem.

References

- 1 T. Yagita et al., Modern Physics Letters A 18 (2003) 322-326
- [2] H. Akiyoshi et al., Phys. Rev. C64 (2001) 034001
- 3 H. Kamada, private communication
- [4] J. Jourdan et al., Nucl. Phys. A453 (1986) 220
- [5] H. Anklin et al., Nucl. Phys. A636 (1998) 189
- [6] W. K. Pitts et al., Phys. Rev. C37 (1988) 1

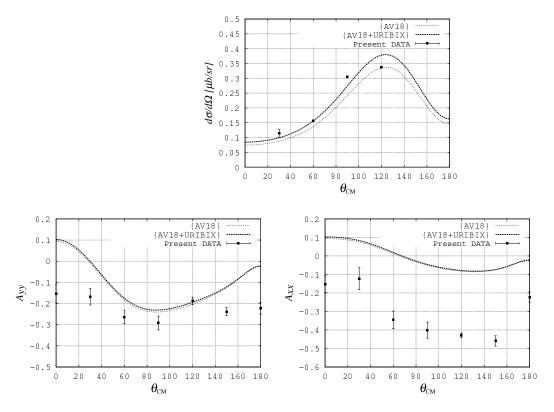


Figure 1: Preliminary data for pd radiative capture at $E_d = 140$ MeV. Thick and thin curves are calculations by Kamada using AV18 NN potential with and without 3NF(URBIX), respectively.

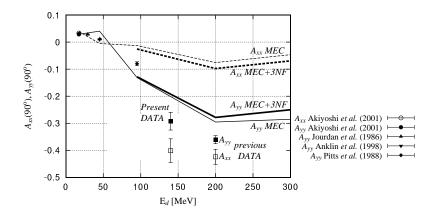


Figure 2: Energy dependence of A_{xx} and A_{yy} at 90° [1, 2, 4, 5, 6]. A relation $A_{xx} \approx A_{yy}$ holds in the experiment while $A_{xx} \neq A_{yy}$ in calculations above 60 MeV.