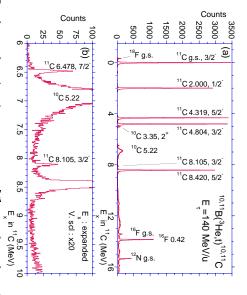
High-resolution study of ¹¹B to ¹¹C Gamow-Teller strengths

Y. Fujita¹ P. von Brentano² T. Adachi¹ G.P.A. Berg³ D. De Frenne⁴ K. Fujita⁵ K. Hatanaka⁵ E. Jacobs K. Nakanishi⁵ A. Negret⁴ L. Popescu⁴ Y. Sakemi⁵ Y. Shimbara¹ Y. Shimizu⁵ Y. Tameshige⁵ A. Tamii⁵ M. Uchida⁶ and M. Yosoi⁶


⁴ Vakgroep Subatomaire en Strakingsfysica, Universiteit Gent, B-9000 Gent, Belgium Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ²Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands ¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ⁶Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan

at 0° and the B(GT) values [1], good probes of GT transition strengths owing to the relatively simple proportionality between the cross sections In particular, those performed at angles around 0° and intermediate energies $(E_p > 100 \text{ MeV})$ were shown to be exchange reactions, like the (p,n) reaction, can access analogous GT transitions without the Q-value limitation. MeV). In the β -decay study of ¹¹C, the B(GT) value can be obtained only for the g.s. to g.s. transition. Chargeaccessible range of excitation energy (E_x) is limited by the small Q value for the A=11 system $(Q_{\rm EC})$ The most direct information on the GT transition strength B(GT) is obtained from β -decay studies, but the

$$\frac{d\sigma_{\text{CE}}}{d\Omega}(0^{\circ}) \simeq K N_{\sigma\tau} |J_{\sigma\tau}(0)|^2 B(\text{GT}) = \hat{\sigma}_{\text{GT}}(0^{\circ}) B(\text{GT}), \tag{1}$$

factor, $N_{\sigma\tau}$ is a distortion factor, and $\hat{\sigma}_{\rm GT}(0^{\circ})$ is a unit cross section for the GT transition at 0° where $J_{\sigma\tau}(0)$ is the volume integral of the effective interaction $V_{\sigma\tau}$ at momentum transfer q=0, K is a kinematic

Ring Cyclotron [2]. An energy resolution of 45 keV (FWHM) was achieved. By consulting Ref. [3], all of these the "WS course" and the Grand Raiden spectrometer using a 140 MeV/nucleon $^3\mathrm{He}$ beam from the Kvalues allowed by the GT transitions. No broadening of peak widths was observed for these states prominent states could be identified as 11 C states with J^{π} values of either $1/2^-, 3/2^-$, or $5/2^-$, i.e., the J^{π} The ${}^{11}\mathrm{B}({}^{3}\mathrm{He},t){}^{11}\mathrm{C}$ experiment was performed at the high energy-resolution facility of RCNP, consisting of

ergy of 16 MeV for scattering angles $\Theta \leq 0.5^{\circ}$ observed at $E_x = 8.105$ MeV. Although the tation energies (in MeV) and J^{π} other strongly excited states. completely different structure compared to the transition strength is very weak, suggesting a GT transition to this state is J^{π} allowed, the indicated. and (b) expanded 6-10 MeV region. Excition of (a) the range up to the excitation en-Figure 1: Spectra of the ${}^{11}\mathrm{B}({}^{3}\mathrm{He},t){}^{11}\mathrm{C}$ reac-Weakly excited $3/2^-$ state was

that this state can have a cluster structure with $2\alpha + {}^{3}\text{He}$ [5]. g.s. with $J^{\pi}=3/2^{-}$ is allowed by the J^{π} selection rule. Recently, a calculation using AMD method showed almost no strength in the transition to the $J^{\pi} = 3/2^{-}$, 8.105 MeV state, although the transition from the ¹¹B MeV was also resolved into 8.105 and 8.420 MeV states in agreement with Ref. [3]. It was found that there was two sharp states at 4.319 and 4.804 MeV with nearly equal strengths. In the earlier (p,n) experiments [4], one broad peak was observed at 4.5 MeV. This peak was resolved into A previously unresolved peak at 8.4

For details see Ref. [6].

References

- Taddeucci et al., Nucl. Phys. A469, 125 (1987), and references therein

- See the web site: www.rcnp.osaka-u.ac.jp. F. Ajzenberg-Selove and J.H. Kelley, Nucl. Phys. **A506**, 1 (1990). T.N. Taddeucci *et al.*, Phys. Rev. C **42**, 935 (1990). Y. Kanada-En'yo, RCNP workshop on "recent development of few body physics", Dec. 23-25, 2004. Y. Fujita *et al.*, Phys. Rev. C **70**, 011306(R) (2004).