Isospin-asymmetry matrix element in $T_z=\pm 3/2 \rightarrow \pm 1/2$ mirror Gamow-Teller transitions for A=41 nuclei

Y. Fujita¹ S. Sasaki² T. Adachi¹ G.P.A. Berg^{3,4} B.A. Brown⁵ H. Fujita¹ K. Hatanaka³ J. Kamiya³ K. Nakanishi³ Y. Sakemi³ Y. Shimbara¹ Y. Shimizu³ Y. Tameshige³ M. Uchida⁶ T. Wakasa³ and M. Yosoi⁶

¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

²Shizuoka Institute of Technology, Fukuroi, Shizuoka 437-8555, Japan

³Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

⁴Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands

⁵NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824

⁶Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan

The $B(\mathrm{GT})$ strengths for the $T_z=\pm 3/2 \to \pm 1/2$ transitions in the A=41 sytem, i.e., $^{41}\mathrm{K}$ ($T_z=+3/2$) to $^{41}\mathrm{Ca}$ ($T_z=+1/2$) and $^{41}\mathrm{Ti}$ ($T_z=-3/2$) to $^{41}\mathrm{Sc}$ ($T_z=-1/2$), were derived from the $^{41}\mathrm{K}$ ($^{3}\mathrm{He},t$) measurement and the $^{41}\mathrm{Ti}$ β -decay study, respectively, and they are shown in Figs. 1 and 2. By comparing them, we notice that the gross features of these two $B(\mathrm{GT})$ distributions for the isospin mirror transitions are similar, but the details are somewhat different. One of the interesting features is that the strengths of two J=5/2 states at about 4.8 MeV and 4.9 MeV in $^{41}\mathrm{Ca}$ and $^{41}\mathrm{Sc}$, respectively, are almost reversed. It is natural to think that these reversed strengths in the $T_z=\pm 3/2\to\pm 1/2$ analog transitions are caused by the action of an interaction depending on T_z , i.e., an isospin asymmetric interaction. For simplicity, let us think only of the mixture between these J=5/2 doublet states. Then we can deduce that: (A) the isospin-asymmetry matrix-elements acting in these isospin mirror states have similar strengths but opposite signs, and (B) without the isospin-asymmetry matrix-elements the transition strengths to these doublet states are almost the same. We estimate the approximate values of isospin-asymmetry matrix-elements on the bases of these assumptions.

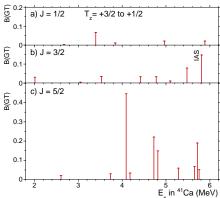


Figure 1: The $T_z = +3/2 \rightarrow +1/2$ B(GT) distributions deduced from the $^{41}K(^{3}He, t)$ measurement for the ^{41}Ca states with (a) $J^{\pi} = 1/2^{+}$, (b) $J^{\pi} = 3/2^{+}$, and (c) $J^{\pi} = 5/2^{+}$.

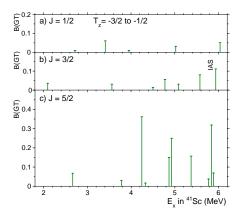


Figure 2: The $T_z = -3/2 \rightarrow -1/2$ B(GT) distributions deduced from the ⁴¹Ti β -decay measurement for the ⁴¹Sc states with (a) $J^{\pi} = 1/2^+$, (b) $J^{\pi} = 3/2^+$, and (c) $J^{\pi} = 5/2^+$.

The nuclear Hamiltonian is written as $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{1A}$, where \mathcal{H}_0 and \mathcal{H}_{1A} are isospin symmetry (conserving) term and isospin-asymmetry term, respectively. Two eigenstates of \mathcal{H}_0 are denoted by Φ_a and Φ_b . Since the Hamiltonian \mathcal{H}_0 is isospin symmetric, these wave functions are the same in both $T_z = 1/2$ (⁴¹Ca) and $T_z = -1/2$ (⁴¹Sc) nuclei. The excitation energies E_a and E_b of observed states are the eigenvalues of the total Hamiltonian \mathcal{H}_0 . Let us think of wave functions Ψ_a and Ψ_b that satisfy

$$(\mathcal{H}_0 + \mathcal{H}_{IA})\Psi_{\mathbf{a}} = E_a\Psi_{\mathbf{a}} \quad \text{and} \quad (\mathcal{H}_0 + \mathcal{H}_{IA})\Psi_{\mathbf{b}} = E_b\Psi_{\mathbf{b}}, \tag{1}$$

respectively. The form of these equations are formally the same for $T_z=\pm 1/2$ nuclei, but note here that the matrix-elements in the isospin-asymmetry term $\mathcal{H}_{\mathrm{IA}}$ are different in the $T_z=\pm 1/2$ nuclei [assumption (A)]. Therefore, the wave functions $\Psi_{\mathbf{a}}$ and $\Psi_{\mathbf{b}}$ are different in $T_z=\pm 1/2$ nuclei.

We can formally write states Ψ_a and Ψ_b in terms of linear combinations of the two states Φ_a and Φ_b as

$$\Psi_{\mathbf{a}} = \alpha \Phi_{\mathbf{a}} + \beta \Phi_{\mathbf{b}}, \quad \text{and} \quad \Psi_{\mathbf{b}} = \beta \Phi_{\mathbf{a}} - \alpha \Phi_{\mathbf{b}},$$
 (2)

where $\alpha^2 + \beta^2 = 1$. Note again here that the coefficients α and β are different in the $T_z = \pm 1/2$ nuclei. Using these relationships, the matrix element of the off-diagonal matrix \mathcal{H}_{IA} , i.e., the isospin-asymmetry term, can be

$$\langle \mathbf{\Phi_a} | \mathcal{H}_{IA} | \mathbf{\Phi_b} \rangle = \alpha \beta (E_a - E_b). \tag{3}$$

Let us think of the GT transitions caused by the operator $\mathcal{O} = \sigma \tau$ starting from the g.s. Φ_0 of $T_z = \pm 3/2$ nuclei. For simplicity, we assume that the effect of isospin asymmetry in the g.s. is small. The GT transition strength $B(\mathrm{GT})$ is proportional to the squared value of the transition matrix element of $\sigma \tau$ type. Therefore, the ratios of the $B(\mathrm{GT})$ values R^0 and R^1 for the transitions to the two excited states before and after the mixing, respectively, can be expressed as

$$R^{0} = \frac{B^{0}(GT)_{b}}{B^{0}(GT)_{a}} = \frac{|\langle \mathbf{\Phi_{b}} | \mathcal{O} | \mathbf{\Phi_{0}} \rangle|^{2}}{|\langle \mathbf{\Phi_{a}} | \mathcal{O} | \mathbf{\Phi_{0}} \rangle|^{2}},\tag{4}$$

and

$$R^{1} = \frac{B^{1}(GT)_{b}}{B^{1}(GT)_{a}} = \frac{|\langle \Psi_{\mathbf{b}} | \mathcal{O} | \Phi_{\mathbf{0}} \rangle|^{2}}{|\langle \Psi_{\mathbf{a}} | \mathcal{O} | \Phi_{\mathbf{0}} \rangle|^{2}},\tag{5}$$

where $B^0(GT)$ and $B^1(GT)$ are the B(GT) values before the mixing of states and the observed B(GT) values after the mixing of states, respectively. By putting Eq. (2) into Eq. (5), and using R^0 , the ratio R^1 can be written as

$$R^{1} = \frac{|\langle \beta \mathbf{\Phi}_{\mathbf{a}} - \alpha \mathbf{\Phi}_{\mathbf{b}} | \mathcal{O} | \mathbf{\Phi}_{\mathbf{0}} \rangle|^{2}}{|\langle \alpha \mathbf{\Phi}_{\mathbf{a}} + \beta \mathbf{\Phi}_{\mathbf{b}} | \mathcal{O} | \mathbf{\Phi}_{\mathbf{0}} \rangle|^{2}}$$
(6)

$$\simeq \frac{|\beta - \alpha \sqrt{R^0}|^2}{|\alpha + \beta \sqrt{R^0}|^2}. (7)$$

The transformation from Eq. (6) to Eq. (7) is not exact when the associated phases are different in the matrix elements $\langle \Phi_{\bf a} | \mathcal{O} | \Phi_{\bf 0} \rangle$ and $\langle \Phi_{\bf b} | \mathcal{O} | \Phi_{\bf 0} \rangle$.

There is no way to study the ratio R^0 experimentally. However, according to the assumption (B), we can put $R^0 \approx 1$, i.e., the doublet states have almost equal B(GT) values without the influence of \mathcal{H}_{IA} . Using the experimental B(GT) values of Figs. 1 and 2, the values of R^1 are obtained for the doublet states observed at 4.8 MeV in the (3 He, t) study and also for the doublet states observed at 4.9 MeV in the β -decay study. A set of α and β is obtained for each of these R^1 values using Eq. (7) and the relationship $\alpha^2 + \beta^2 = 1$. The isospin-asymmetry matrix-element is calculated by putting a set of α and β and the difference of the excitation energies into Eq. (3). As a result, values of -8.3 keV and 7.5 keV are obtained for the $T_z = +3/2 \rightarrow +1/2$ and $T_z = -3/2 \rightarrow -1/2$ transitions, respectively. The signs of them are opposite and the absolute values are nearly the same, which is consistent with the assumption (A). It is interesting that relatively small isospin-asymmetry interactions of ≈ 8 keV can make the reversed transition strengths observed for the isospin mirror transitions to the doublet states with $\Delta E \approx 70$ keV.

Isospin mixing was studied at a similar mass of A=37 for a pair of $J^{\pi}=3/2^+$ states. One of them was the T=3/2 IAS in $^{37}{\rm K}$ at $E_x=5.051$ MeV and the other was a T=1/2 state lying 31 keV below. The relative proton widths of the two levels measured in a $^{36}{\rm Ar}(\vec{p},p_0)$ resonance reaction implied an isospin-mixing matrix-element of 4.8 keV [1]. In addition the analysis of the β^+ -decay study from the g.s. of $^{37}{\rm Ca}$ to these two states suggested a value of 5.9 keV [1, 2]. It is interesting that similar values are deduced for the isospin-asymmetry matrix-element obtained here and the isospin-mixing matrix-element.

For details see Ref. [3].

References

- [1] N.I. Kaloskamis, A. García, S.E. Darden, E. Miller, W. Haeberli, P.A. Quin, B.P. Schwartz, E. Yacoub, and E.G. Adelberger, Phys. Rev. C 55, 640 (1997).
- [2] A. García, E.G. Adelberger, P.V. Magnus, H.E. Swanson, D.P. Wells, F.E. Wietfeldt, O. Tengblad, and the ISOLDE Collaboration, Phys. Rev. C 51, R439 (1995).
- [3] Y. Fujita et al., Phys. Rev. C 70, 054311 (2004).