A thin-wide plastic scintillator for separation of α and d in dd capture experiment

H. Ohira¹, K. Sagara¹, T. Kudoh¹, M. Tomiyama¹, T. Noro¹, T.Wakasa¹, H. P. Yoshida¹, Y. Nagasue¹, K. Hatanaka², Y. Sakemi², A. Tamii², Y. Shimizu², Y. Tameshige², H. Matsubara² and T. Uesaka³

¹Department of physics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan

²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ³Center for Nuclear Study, The University of Tokyo, Wako, Saitama 351-0198, Japan

In our measurements of ${}^2{\rm H}(d,{}^3{\rm He})\gamma$ reaction at ${\rm E}_d{=}200{\rm MeV}$ [1] and ${\rm E}_d{=}140{\rm MeV}$ [2], we found a relation of ${\rm A}_{xx}$ \approx ${\rm A}_{yy}$ and a large discrepancy in ${\rm A}_{xx}$ between the measurement and calculations. The ${\rm A}_{xx}\approx{\rm A}_{yy}$ relation has been found also at ${\rm E}_d{=}17.5{\rm MeV}$ [3]. This relation in dp radiative capture is curious. As far as we know, a completely different relation of ${\rm A}_{xx}\approx{\rm -A}_{yy}$ roughly holds in existing data of other reactions and scatterings induced by deuterons. In order to see whether the relation of ${\rm A}_{xx}\approx{\rm A}_{yy}$ holds also in dd radiative capture or not, we planed to measure ${\rm A}_{xx}$ and ${\rm A}_{yy}$ in dd capture at ${\rm E}_d{=}200{\rm MeV}$.

Cross section of dd capture is extremely small, for example, 2.5nb/sr at the maximam at $E_d=95 \text{MeV}[4]$. To obtain high-detection efficiency, we use a liquid deuterium target and use LAS(large acceptance spectrometer composed of Q and D magnets) to detect α recoils which are concentrated within 8° in the laboratory system.

In the dd capture experiment, the largest backgrounds(BG) are deuterons of the same magnetic rigidity as the α recoils. In our previous dp capture experiments, d-BG were completely separated from 3 He recoils by using times of flight(TOF). In the dd capture experiment we detect α . Unfortunately α and d of the same magnetic rigidity have the same velocity, and we can not separate α and d by TOF. Energies of α and d of the same magnetic rigidity differ by $\sqrt{2}$ times. However, separation of them in energy spectrum is not sufficient, because the number of d is several orders of magnitude larger than the number of α recoil.

For the present dd capture experiment, we developed a thin and wide plastic scintillator shown Fig.1. Thickness of the scintillator is 2mm, which is necessary to stop α recoils and to pass d-BG. Another plastic scintillator (veto) is placed behind the thin scintillator, and signals from the veto scintillator were used to reject the events produced by d and p.

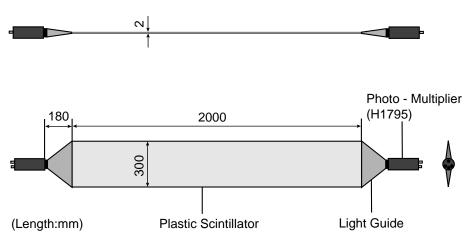


Figure 1: A thin-wide plastic scintillator for separation of α and d

Production of a scintillator of 2mm in thickness and of considerable width $(300 \text{mm} \times 2,000 \text{mm})$ was the first try for NE Co. Ltd(USA). The try needed three months and was succeeded.

It was not sure whether light output from such a thin-wide scintillator is sufficient to detect particle or not. There were many negative comments before the test measurement.

Fig.2 shows two-dimensional spectrum of energy lass (ΔE) in the thin-wide scintillator (sum of left- and right-PMT outputs) and x position on a vertical drift chamber (VDC) placed in front of the scintillator. The thin scintillator worked well, α events were clearly seen, and d events were almost completely rejected by the veto method.

By the veto method, we succeeded in separating α events from enormous d-BG. Our next step is to separate α recoils from dd capture reaction from α events from (d,α) reaction in window foils of liquid deuterium target.

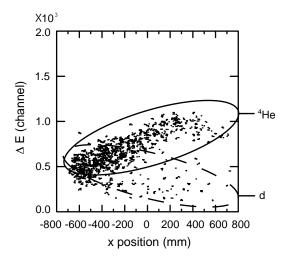


Figure 2: x position on VDC versus ΔE in the thin scintillator

References

- [1] T. Yagita et al., Modern Physics Letters A 18 (2003) 322-32
- [2] T. Kudoh et al., RCNP annual report 2004(this issue)
- [3] H. Akiyoshi et al., Phys. Rev. C64 (2001) 034001
- [4] W. K. Pitts et al., Phys. Rev. C39 (1989) 1679