Study of High-Spin Isomer in ¹⁵¹Er using Ar Beam A. Odahara¹, T. Fukuchi², T. Hori¹, J. Komurasaki¹, T. Masue¹, T. Nagasawa¹, D. Nishimura¹, K. Tajiri¹, A. Sato¹, Y. Akasaka¹, T. Furukawa¹, T. Shimoda¹, Y. Wakabayashi^{3,4}, Y. Gono⁵ ¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ²Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan ³Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan ⁴Center for Nuclear Study(CNS), University of Tokyo, Wako, Saitama 351-0198, Japan ⁵RIKEN, Wako, Saitama 351-0198, Japan High-spin isomers are systematically studied in N=83 isotones [1]. Life times of these isomers range between ~ 10 ns and $\sim \mu s$. Their spins and parities are $49/2^+$ and 27^+ for odd and odd-odd nuclei, respectively, in N=83 isotones with $60 \leq Z \leq 66$. Configurations of high-spin isomers are deduced experimentally and theoretically [1] to be $[\nu(f_{7/2}h_{9/2}i_{13/2})\pi h_{11/2}^2]_{49/2}^+$ for odd nuclei and $[\nu(f_{7/2}h_{9/2}i_{13/2})\pi(d_{5/2}h_{11/2}^2)]_{27}^+$ for odd-odd nuclei. These isomers are of stretch coupled configurations and have oblate shapes. They can be categorized to be high-spin shape isomers, as they are caused by the sudden shape change from near spherical to an oblate shape [2]. By the systematic study of high-spin isomers, several results were obtained, such as (1) change of Z=64 sub-shell gap energy [2] and (2) experimental pairing gap energy at high-spin states [3]. The Z=64 sub-shell gap energy was found to decrease from 2.4 to 1.9 MeV as the proton number decreases from 64 to 60. Paring gap energies of high-spin states were experimentally extracted by the three-point expression using binding energies and excitation energies of high-spin isomers. These pairing gap energies at high-spin states are as large as those of the ground states. For the high-spin isomer in an N=83 isotone ¹⁵¹Er with Z=68, spin-parity was reported to be $67/2^-$ by Grenoble group [4]. This spin-parity could not be reproduced by a deformed independent particle model [5], which explains well the isomerism of high-spin isomers in other N=83 isotones. This model predicts that the spin-parity of the isomer would be $49/2^+$ or $61/2^+$. If the spin-parity of the high-spin isomer of ¹⁵¹Er is really $67/2^-$, it requires to find a new mechanism to generate the isomer. In order to study the isomerism of 151 Er, the experiment was carried out at EN course [6] in Research Center for Nuclear Physics (RCNP), Osaka University. The nucleus of 151 Er was produced by the reaction of 116 Sn(40 Ar,5n) 151 Er. An enriched 116 Sn target of 1.4 mg/cm² was used with a lead backing of 11 mg/cm² to stop the reaction products recoiled out from target. This target was bombarded by a 40 Ar beam of 200 MeV with intensity of around 25 enA. An 40 Ar beam was directly provided by the upgraded AVF cyclotron going through the new bypass beam line. Five high-purity germanium detectors were installed surrounding the target. The experiment was carried out using prompt and delayed $\gamma\gamma$ coincidence methods to reconstruct the level scheme of 151 Er. In order to determine the spin-parity of the high-spin isomer in 151 Er, measurements of γ -ray angular correlations and γ -ray linear polarizations were performed. Preliminary γ -ray gated spectrum is shown in Fig. 1. The detailed analyses are now in progress. Figure 1: Gamma-ray spectrum gated by the doublet peak of 1100 keV in ¹⁵¹Er. ## References - [1] Y. Gono et al., Eur. Phys. A 13, 5 (2002) and references there in. - [2] A. Odahara et al., Eur. Phys. J. A 25, Supplement 1, 375 (2005). - [3] A. Odahara et al., Phys. Rev. C 72, 061303 (2005). - [4] C. Foin et al., Eur. Phys. A 8, 451 (2000); S. André et al., Z. Phys. A 337, 349 (1990). - [5] T. Døssing et al., Phys. Scr. 24, 258 (1981). - [6] T. Shimoda et al., NIM B **70**, 320 (1992).