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The author proposed recently a new scheme for color confinement based on monopoles in QCD
coming from line singularities of non-Abelian gauge fields. To check if the scenario is realized in
nature, numerical studies are done extensively in the framework of lattice field theory by adopting
pure SU(2) gauge theory as a model of QCD. Monopole dominance of the string tension and the
dual Meissner effect caused by monopole currents are found beautifully without any additional gauge
fixing. In addition, a blockspin transformation and the Monte-Carlo renormalization group studies
are applied to lattice monopoles. With the help of various techniques smoothing the vacuum, it
is found that the density of the color-invariant lattice monopole and the effective monopole action
show beautiful scaling behaviors. These numerical data suggest that the new confinement scenario
is realized in nature. This report shows the highlights of these interesting results obtained mainly
by using Large-Scale Computer System of RCNP.
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I. INTRODUCTION

Color confinement in quantum chromodynamics
(QCD) is still an important unsolved problem [1]. As
a picture of color confinement, ’t Hooft [2] and Mandel-
stam [3] conjectured that the QCD vacuum is a kind of
a magnetic superconducting state caused by condensa-
tion of magnetic monopoles and an effect dual to the
Meissner effect works to confine color charges. However,
to find color magnetic monopoles which condense is not
straightforward in QCD.

An interesting idea to realize this conjecture is to
project QCD to the Abelian maximal torus group by a
partial (but singular) gauge fixing [4]. In SU(3) QCD,
the maximal torus group is Abelian U(1)2. Then color
magnetic monopoles appear as a topological object. Con-
densation of the monopoles causes the dual Meissner ef-
fect.

Numerically, an Abelian projection in non-local gauges
such as the maximally Abelian (MA) gauge has been
found to support the Abelian confinement scenario beau-
tifully [5].

However, although numerically interesting, the idea of
Abelian projection[4] is theoretically very unsatisfactory.
1) In non-perturabative QCD, any gauge-fixing is not
necessary at all. There are infinite ways of such a partial
gauge-fixing and whether the ’t Hooft scheme is gauge
independent or not is not known. 2) After an Abelian
projection, only one (in SU(2)) or two (in SU(3)) gluons
are photon-like with respect to the residual U(1) or U(1)2

symmetry and the other gluons are massive charged mat-
ter fields. Such an asymmetry among gluons is unnatural.
Moreover, also numerically, there are some data suggest-
ing the problem of the ’tHooft idea obtained in a local
unitary gauge called Polyakov (PL) gauge [6, 7].
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Recently, the present author proposed a new theoreti-
cal scheme for color confinement based on the dual Meiss-
ner effect which is free from the above problems [8, 9].
The singularities of original gauge fields is found to be the
origin of color magnetic monopoles. This is the first in
non-Abelian QCD to find Abelian-like monopoles with-
out resorting to any artificial technique. In the next sec-
tion, we briefly review the above breakthrough in QCD
monopole and the new scheme of color confinement.

To prove if such a new confinement scheme is realized
in nature, numerical studies in the framework of lattice
gauge theories are very important. Section III deals with
numerical results showing perfect monopole dominance
of the string tension and the Abelian dual meissner ef-
fect without any artificial gauge fixing. Section IV dis-
cusses the continuum limit of the lattice monopole den-
sity and the final section is devoted to the Monte-Carlo
renormalization-group studies of the infrared monopole
action.

II. A NEW SCHEME OF COLOR
CONFINEMENT

A. Equivalence of Jµ and kµ

First of all, we prove that the Jacobi identities of
covariant derivatives lead us to conclusion that viola-
tion of the non-Abelian Bianchi identities (VNABI) Jµ
is nothing but an Abelian-like monopole kµ defined by
violation of the Abelian-like Bianchi identities without
gauge-fixing [8, 9]. Define a covariant derivative opera-
tor Dµ = ∂µ − igAµ. The Jacobi identities are expressed
as

ϵµνρσ[Dν , [Dρ, Dσ]] = 0. (1)
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By direct calculations, one gets

[Dρ, Dσ] = [∂ρ − igAρ, ∂σ − igAσ]

= −ig(∂ρAσ − ∂σAρ − ig[Aρ, Aσ]) + [∂ρ, ∂σ]

= −igGρσ + [∂ρ, ∂σ],

where the second commutator term of the partial deriva-
tive operators can not be discarded, since gauge fields
may contain a line singularity. Actually, it is the ori-
gin of the violation of the non-Abelian Bianchi identities
(VNABI) as shown in the following. The non-Abelian
Bianchi identities and the Abelian-like Bianchi identities
are, respectively: DνG

∗
µν = 0 and ∂νf

∗
µν = 0. The re-

lation [Dν , Gρσ] = DνGρσ and the Jacobi identities (1)
lead us to

Jµ =
1

2
Ja
µσ

a = DνG
∗
µν =

1

2
ϵµνρσDνGρσ

= − i

2g
ϵµνρσ[Dν , [∂ρ, ∂σ]] =

1

2
ϵµνρσ[∂ρ, ∂σ]Aν

= ∂νf
∗
µν = kµ =

1

2
kaµσ

a, (2)

where fµν is defined as fµν = ∂µAν − ∂νAµ = (∂µA
a
ν −

∂νA
a
µ)σ

a/2. Namely Eq.(2) shows that the violation of
the non-Abelian Bianchi identities is equivalent to that
of the Abelian-like Bianchi identities. The Abelian-like
monopole satisfies the Abelian-like conservation law

∂µkµ = ∂µ∂νf
∗
µν = 0 (3)

due to the antisymmetric property of the Abelian-like
field strength. Hence VNABI satisfies also the same
Abelian-like conservation law

∂µJµ = 0. (4)

B. Dirac quantization condition

Next we show that the magnetic charges derived from
k4 = J4 satisfy the Dirac quantization condition with re-
spect to magnetic and electric charges. Consider a space-
time point O where the Bianchi identities are violated
and a three-dimensional sphere V of a large radius r from
O. Since k4 = J4 is given by the total derivative, the be-
havior of the gauge field at the surface of the sphere is
relevant. When r → ∞, the non-Abelian field strength
should vanish since otherwise the action diverges. Then
the magnetic charge could be evaluated by a gauge field
described by a pure gauge Aµ = Ω∂µΩ

†/ig, where Ω is a
gauge transformation matrix satisfying Ω[∂µ, ∂ν ]Ω

† = 0
at r → ∞. Then the magnetic charge gdm in a color

direction is evaluated as follows:

gdm =

∫
V

d3xkd4 =

∫
d3x

1

2
ϵ4νρσ∂ν(∂ρA

d
σ − ∂σA

d
ρ)

=

∫
V

d3x
1

2ig
ϵijk∂iTrσ

d(∂jΩ∂kΩ
† − ∂kΩ∂jΩ

†

+Ω[∂j , ∂k]Ω
†)

=

∫
V

d3x
1

2g
ϵijk{ϵabc∂i(ϕ̂a∂j ϕ̂

b∂kϕ̂
c

+∂iTrσ
dΩ[∂j , ∂k]Ω

†)}

=

∫
∂V

d2S
1

2g
ϵijkϵ

abcϕ̂a∂j ϕ̂
b∂kϕ̂

c, (5)

where Ω[∂j , ∂k]Ω
† = 0 on the surface at r → ∞ is used

and ϕ̂ is a Higgs-like field defined as

ϕ̂ = ϕ̂iσi

= ΩσdΩ†.

ϕ̂2 = 1 is shown easily. Since the field ϕ̂ is a single-valued
function, Eq.(5) is given by the wrapping number n char-
acterizing the homotopy class of the mapping between

the spheres described by ϕ̂2 = (ϕ̂1)2 + (ϕ̂2)2 + (ϕ̂3)2 = 1
and ∂V = S2: π2(S

2) = Z. Namely

gdmg = 4πn. (6)

This is just the Dirac quantization condition. Note that
the minimal color electric charge in any color direction
is g/2. Hence the kinematical conservation law is also
topological.

C. Proposal of the vacuum in the confinement
phase

Now we propose a new mechanism of color confinement
in which VNABI Jµ play an important role in the vac-
uum. Since VNABI transforms as an adjoint operator, it
can be diagonalized by a unitary matrix Vd(x) as follows:

Vd(x)Jµ(x)V
†
d (x) = λµ(x)

σ3

2
,

where λµ(x) is the eigenvalue of Jµ(x) and is then color
invariant but magnetically charged. Note that Vd(x) does
not depend on µ due to the Coleman-Mandula theorem.
Then one gets

Φ(x) ≡ V †
d (x)σ3Vd(x) (7)

Jµ(x) =
1

2
λµ(x)Φ(x), (8)∑

a

(Ja
µ(x))

2 =
∑
a

(kaµ(x))
2 = (λµ(x))

2. (9)

Namely the color electrically charged part and the mag-
netically charged part are separated out. From (8) and
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(4), one gets

∂µJµ(x) =
1

2
(∂µλµ(x)Φ(x) + λµ(x)∂µΦ(x))

= 0. (10)

Since Φ(x)2 = 1,

∂µλµ(x) = −λµ(x)Φ(x)∂µΦ(x)

= 0.

Hence the eigenvalue λµ itself satisfies the Abelian con-
servation rule.

Furthermore, when use is made of (5), it is possible to
prove that

1

2
ϵµνρσ∂νf

′
µν(x) = λµ(x)

σ3

2
, (11)

where

f ′
µν(x) = ∂µA

′
ν(x)− ∂νA

′
µ(x)

A′
µ = VdAµV

†
d − i

g
∂µVdV

†
d ,

≡
A

′a
µ σa

2
.

Namely,

1

2
ϵµνρσ∂νf

′1,2
ρσ (x)(x) = 0

1

2
ϵµνρσ∂νf

′3
ρσ(x)(x) = λµ(x). (12)

The singularity appears only in the diagonal component
of the gauge field A′

µ.
If one considers for large r

A′
µ → Ω∂µΩ

†/ig,

ϕ̂ = ϕ̂iσi = Ωσ3Ω†,

one can easily see from (12) and (5) that the magnetic
charge from the eigenvalue λµ also satisfies the Dirac
quantization condition (6).

It is very interesting to see that f
′3
µν(x) is actually the

gauge invariant ’tHooft tensor[10]:

f
′3
µν(x) = TrΦ(x)Gµν(x) +

i

2g
TrΦ(x)DµΦ(x)DνΦ(x),

in which the field Φ(x) (7) plays a role of the scalar Higgs
field in Ref.[10]. To be noted is that the field Φ(x) (7) is
determined uniquely by VNABI itself in the gluodynam-
ics without any Higgs field nor any (partial) gauge-fixing.
The condensation of the gauge-invariant magnetic cur-
rents λµ does not give rise to a spontaneous breaking of
the color electric symmetry. Condensation of the color
invariant magnetic currents λµ may be a key mechanism
of the physical confining vacuum. This is a new scheme
of color confinement we are going to propose.

III. MONOPOLE DOMINANCE AND THE
ABELIAN DUAL MEISSNER EFFECT.

A. Definition of lattice monopoles

Since the Dirac quantization condition of the magnetic
charge is a key point in studying monopoles as a topo-
logical object, we adopt an Abelian-like definition of a
monopole following DeGrand-Toussaint [11] as a lattice
version of VNABI, First, we explain how to extract the
Abelian fields and the color-magnetic monopoles from the
thermalized non-Abelian SU(2) link variables,

Uµ(s) = U0
µ(s) + iσ⃗ · U⃗µ(s) , (13)

where σ⃗ = (σ1, σ2, σ3) is the Pauli matrix. An Abelian
link variable in one of the color directions is defined as

θaµ(s) = arctan
(Ua

µ(s)

U0
µ(s)

)
. (14)

Then the Abelian field strength tensors are written as

Θa
µν(s) = θaµ(s) + θaν(s+ µ̂)− θaµ(s+ ν̂)− θaν(s)

= Θ̄a
µν(s) + 2πna

µν(s) , (15)

where Θ̄a
µν ∈ [−π, π] and na

µν(s) is an integer correspond-
ing to the number of the Dirac strings piercing the pla-
quette. The monopole currents are then defined by [11]

kaν(s) =
1

4π
ϵµνρσ∂µΘ̄

a
ρσ(s+ ν̂)

= −1

2
ϵµνρσ∂µn

a
ρσ(s+ ν̂) ∈ Z , (16)

where ∂µ is regarded as a forward difference.

B. Monopole dominance

We investigate the monopole contribution to the static
potential in order to examine the role of monopoles for
confinement[12, 13]. The monopole part of the Abelian
Polyakov loop operator is extracted as follows:

PA = Pph · Pmon ,

Pph = exp{−i

Nt−1∑
k=0

∑
s′

D(s+ k4̂− s′)∂′
νΘ̄ν4(s

′)} ,

Pmon = exp{−2πi

Nt−1∑
k=0

∑
s′

D(s+ k4̂− s′)∂′
νnν4(s

′)} .

(17)

We call Pph the photon and Pmon the monopole parts of
the Abelian Polyakov loop, respectively. Here the color
index is dropped for simplicity.
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TABLE I: Simulation parameters for the measurement of
the static potential. NRGT is the number of

random gauge transformations.

β N3
s ×Nt a(β) [fm] Nconf NRGT

2.20 243 × 4 0.211(7) 6000 1000
2.35 243 × 6 0.137(9) 4000 2000
2.35 363 × 6 0.137(9) 5000 1000
2.43 243 × 8 0.1029(4) 7000 4000

1. Simulation parameters

We then compute the static potential from the
monopole Polyakov loop correlation function in a finite
temperature T ̸= 0 system in the confinement phase. We
set T = 0.8 Tc. In order to examine the scaling behavior
of the potential, we simulate the Wilson action on the
243 × (Nt = 4, 6, 8) lattices. Simulation parameters are
summarized in Table I. The lattice spacing a(β) is deter-
mined by using the Sommer scale (r0 = 0.5 [fm]) at zero
temperature.

2. Noise reduction by gauge averaging

Since the signal-to-noise ratio of the correlation func-
tions of PA, Pph and Pmon are still very small with no
gauge fixing, we adopt a new noise reduction method [12].
For a thermalized gauge configuration, we produce many
gauge copies applying random gauge transformations.
Then we compute the operator for each copy, and take
the average over all copies. It should be noted that
as long as a gauge-invariant operator is evaluated, such
copies are identical, but they are not if a gauge-variant
operator is evaluated as in the present case. The results
obtained with this method are gauge-averaged, thus,
gauge-invariant. In practice, we prepare a few thousand
of gauge copies for each independent gauge configuration
(see Table I).

3. Results

We obtain very good signals for the potentials. We fit
these potentials to the function Vfit(R)σR− c/R+µ and
extract the string tension and the Coulombic coefficient,
which are summarized in Table II.

We observe monopole dominance, i.e., the string ten-
sion of the static potential from the monopole Polyakov
loop correlation function is identical to that of the non-
Abelian static potential. It is remarkable that Abelian
dominance and monopole dominance for the string ten-
sion show the good scaling behavior with respect to the
change of lattice spacing. We do not see the volume de-
pendence of the string tension.

TABLE II: Best fitted values of the string tension σa2, the
Coulombic coefficient c, and the constant µa.

243 × 4 σa2 c µa FR(R/a) χ2/Ndf

VNA 0.181(8) 0.25(15) 0.54(7) 3.9 - 8.5 1.00
VA 0.183(8) 0.20(15) 0.98(7) 3.9 - 8.2 1.00
Vmon 0.183(6) 0.25(11) 1.31(5) 3.9 - 6.7 0.98
Vph −2(1)× 10−4 0.010(1) 0.48(1) 4.9 - 9.4 1.02
243 × 6
VNA 0.072(3) 0.49(6) 0.53(3) 4.0 - 9.0 0.99
VA 0.073(4) 0.41(7) 1.09(3) 3.7 - 10.9 1.00
Vmon 0.073(4) 0.44(10) 1.41(4) 3.9 - 9.3 1.00
Vph −1.7(3)× 10−4 0.0131(1) 0.4717(3) 5.1 - 9.4 0.99
363 × 6
VNA 0.072(3) 0.48(9) 0.53(3) 4.6 - 12.1 1.03
VA 0.073(2) 0.47(6) 1.10(2) 4.3 - 11.2 1.03
Vmon 0.073(3) 0.46(7) 1.43(3) 4.0 - 11.8 1.01
Vph −1.0(1)× 10−4 0.0132(1) 0.4770(2) 6.4 - 11.5 1.03
243 × 8
VNA 0.0415(9) 0.47(2) 0.46(8) 4.1 - 7.8 0.99
VA 0.041(2) 0.47(6) 1.10(3) 4.5 - 8.5 1.00
Vmon 0.043(3) 0.37(4) 1.39(2) 2.1 - 7.5 0.99
Vph −6.0(3)× 10−5 0.0059(3) 0.46649(6) 7.7 - 11.5 1.02

C. The Abelian dual Meissner effect

1. Correlation function for the field profile around the q-q̄
system

We investigate the correlation function between a Wil-
son loop W and a local Abelian operator O connected
by a product of non-Abelian link variables (Schwinger
line) L,

⟨O(r)⟩W =
⟨Tr

[
LW (R, T )L†σ1O(r)

]
⟩

⟨Tr [W (R, T )]⟩
. (18)

We use the cylindrical coordinate (r, ϕ, z) to parametrize
the q-q̄ system, where the z axis corresponds to the q-q̄
axis and r to the transverse distance. We are interested
in the field profile as a function of r on the mid-plane of
the q-q̄ system.

2. Simulation parameters

In this computation, we employ the improved Iwasaki
gauge action with the coupling constants β = 1.10 and
1.28 on the 324 lattice, and β = 1.40 on the 404 lattice in
order to investigate the scaling behavior of the correlation
functions with less finite lattice cutoff effects. Simulation
parameters are listed in Table III. The lattice spacings are
determined so as to reproduce the physical string tension√
σ = 440 [MeV]. We use the Wilson loop W (R = 3, T =

5) at β = 1.10, W (R = 5, T = 5) at β = 1.28 and
W (R = 7, T = 7) at β = 1.40. Note that the physical
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FIG. 1: The profile of the color-electric field E⃗A at
β = 1.40.

TABLE III: Simulation parameters for the measurement
of the field profile. n and α are the number of
smearing steps and the smearing parameter.

β V a(β) [fm] Nconf n α
1.10 324 0.1069(8) 5000 80 0.2
1.28 324 0.0635(5) 6000 80 0.2
1.40 404 0.0465(2) 7996 80 0.2

q-q̄ distance is the same (R = 0.32 [fm]) for these Wilson
loops.

3. The penetration depth

We measure all cylindrical components of the color-
electric fields O(s) = EAi(s) = Θ̄4i(s). The results are
plotted in Fig. 1. We find that only EAz has correlation
with the Wilson loop. We then fit ⟨EAz(r)⟩W to a func-
tion f(r) = c1 exp(−r/λ) + c0 and find that the profile
of ⟨EAz(r)⟩W is well described by this functional form,
i.e., the color-electric field is exponentially squeezed. The
fitting curves are also plotted in Fig. 1. The parameter
λ corresponds to the penetration depth.

4. The dual Ampère law

To see what squeezes the color-electric field, we study
the Abelian (dual) Ampère law derived from the defini-
tion of the monopole current in Eq. (16),

∇⃗ × E⃗A = ∂4B⃗A + 2πk⃗ , (19)

where BAi(s) = (1/2)ϵijkΘ̄jk(s). The correlation of each
term with the Wilson loop is evaluated on the same mid-
plane of the q-q̄ system as for the profile measurements
of the color-electric field. We find that only the az-
imuthal components are non-vanishing, which are plotted
in Fig. 2. Note that if the color-electric field is purely of
the Coulomb type, the curl of the electric field is zero. On

r  [ fm ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W
 (
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>

A
  

<O3
 a

0
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0.0015

0.002

=1.28, W(R=5,T=5)β
)A E×∇(

AB4∂

 kπ2

φ

φ

φ

φ

FIG. 2: Tests of the dual Ampère law at β = 1.28 for
W (R = 5, T = 5).
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FIG. 3: The profile of the squared monopole currents at
1.28.

the contrary, the curl of the electric field is non-vanishing
and is reproduced mostly by the monopole currents. In
any case, the dual Ampère law is satisfied, which is a clear
signal of the Abelian dual Meissner effect. This result is
quite the same as that observed in the MA gauge [5].

5. The coherence length

Let us estimate the coherence length by evaluating the
correlation function between the squared monopole den-
sity O(s) = k2µ(s) and the Wilson loop. To measure such
a correlation function, we use the disconnected correla-
tion function. We then fit the profile of ⟨k2µ(r)⟩W to the

functional form g(r) = c′1 exp(−
√
2r/ξ) + c′0, where the

parameter ξ corresponds to the coherence length.

6. The vacuum type

Taking the ratio of the penetration depth and the co-
herence length, the GL parameter

√
2κ = λ/ξ can be esti-

mated, which characterizes the type of the superconduct-
ing vacuum. The results are plotted in Fig. ?? against
lattice spacing a(β). We obtain

√
2κ = 1.04(7), 1.19(5)
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FIG. 4: The GL parameters as a function of the lattice
spacing a(β).

and 1.09(8) for β = 1.10, 1.28 and 1.40, respectively.
We find that the GL parameter shows the scaling be-

havior and the value is about one. This means that the
vacuum type is near the border between the type 1 and 2
dual superconductor.

IV. THE CONTINUUM LIMIT OF THE
LATTICE MONOPOLE DENSITY.

We adopt the tadpole improved action on 484 for cou-
pling constant β = 3.0 ∼ 3.9 and 244 for β = 3.3 ∼ 3.9.
For other details and other references, see Ref.[9].

A. Smoothing vacuum

1. Introduction of smooth gauge-fixings

Monopole loops in the thermalized vacuum produced
contain large amount of lattice artifacts. Hence we here
adopt a gauge-fixing technique smoothing the vacuum,
although any gauge-fixing is not necessary in principle in
the continuum limit:

1. Maximal center gauge(MCG).
We adopt the so-called direct maximal center gauge
which requires maximization of the quantity

R =
∑
s,µ

(TrU(s, µ))2 (20)

with respect to local gauge transformations. The
condition (20) fixes the gauge up to Z(2) gauge
transformation.

2. Laplacian center gauge(LCG).
The second is the direct Laplacian center gauge.

3. Maximal Abelian Wilson loop gauge (AWL).
The third is the maximal Abelian Wilson loop

TABLE IV: A typical example of monopole loop
distributions (Loop length (L) vs Loop
number (No.)) for various gauges in one

thermalized vacuum on 244 lattice at β = 3.6
in the tadpole improved action. Here I and L

denote the color component and the loop
length of the monopole loop, respectively.

NGF I=1 MCG I=1 DLCG I=1
L No L No L No
4 154 4 166 4 164
6 20 6 64 6 66
8 7 8 30 8 28
10 2 10 13 10 15
14 1 12 11 12 10
16 1 14 4 14 3

407824 1 16 5 16 6
18 1 18 2
22 2 20 1
24 2 22 1
28 1 24 2
30 1 26 3
32 1 30 1
34 2 36 1
36 1 44 1
44 1 48 1
46 1 54 1
48 1 58 1
58 1 124 1
124 1 1106 1
2254 1 1448 1

MAW I=1 MAU1 I=1 MAU1 I=3
L No L No L No
4 142 4 73 4 190
6 66 6 32 6 80
8 36 8 13 8 22
10 8 10 11 10 15
12 7 12 6 12 2
14 3 14 3 14 3
16 3 16 2 16 1
18 1 18 3 18 3
20 1 20 2 20 3
22 3 22 1 24 1
26 3 30 2 36 1
28 1 34 2 42 1
30 2 58 1 60 1
32 1 148 1 66 1
34 1 5188 1 146 1
40 1 318 1
46 1 722 1
58 1
120 1
308 1
1866 1

gauge (AWL) in which

R =
∑

s,µ ̸=ν

∑
a

(cos(θaµν(s)) (21)

is maximaized.
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TABLE V: The n = 4 blocked monopole loop distribution
(Loop length (L) vs Loop number (No.)) in

various gauges on 64 reduced lattice volume at
β = 3.6 in the same vacuum used in TableIV.

NGF I=1 MCG I=1 DLCG I=1
L No L No L No

9266 1 4 5 4 8
6 1 6 2
10 1 406 1
340 1

AWL I=1 MAU1 I=1 MAU1 I=3
L No L No L No
4 5 4 12 4 8
6 1 6 1 6 3
14 1 10 1 8 2
352 1 24 1 16 1

26 1 276 1
270 1

4. Maximal Abelian and U(1) Landau gauge (MAU1).
The fourth is the combination of the maximal
Abelian gauge (MAG) and the U(1) Landau gauge.
Namely we first perform the maximal Abelian
gauge fixing and then with respect to the remaining
U(1) symmetry the Landau gauge fixing is done.
This case breaks the global SU(2) color symmetry
contrary to the previous three cases (MCG, LCG
and AWL) but nevertheless we consider this case
since the vacuum is smoothed fairly well. MAG is
the gauge which maximizes

R =
∑
s,µ̂

Tr
(
σ3U(s, µ)σ3U

†(s, µ)
)

(22)

with respect to local gauge transformations. Then
there remains U(1) symmetry to which the Lan-
dau gauge fixing is applied, i.e.,

∑
s,µ cosθ

3
µ(s) is

maximized

2. Extraction of infrared monopole loops

An additional improvement is obtained when we ex-
tract important long monopole clusters only from total
monopole loop distribution. Let us see a typical example
of monopole loop distributions in each gauge in compar-
ison with that without any gauge fixing starting from a
thermalized vacuum at β = 3.6 on 244 lattice. They are
shown in Table IV. One can find almost all monopole
loops are connected and total loop lengths are very large
when no gauge fixing is applied as shown in the no gauge-
fixing (NGF) case. On the other hand, monopole loop
lengths become much shorter in all smooth gauges dis-
cussed here. Also it is found that only one or few loops

are long enough and others are very short as observed
similarly in old papers in MAG. The long monopole clus-
ters are called as infrared monopoles and they are the
key ingredient giving confinement. Since small separate
monopole loops can be regarded as lattice artifacts, we
extract only infrared monopoles alone. We here define
as infrared monopoles as all loops having loop lengths
longer than 10% of the longest one.

3. Blockspin transformation

Block-spin transformation and the renormalization-
group method is known as the powerful tool to study
the continuum limit. We introduce the blockspin trans-
formation with respect to Abelian-like monopoles. The
idea was first applied in obtaining an infrared effective
monopole action in Ref.[14]. The n blocked monopole
has a total magnetic charge inside the n3 cube and is
defined on a blocked reduced lattice with the spacing
b = na, a being the spacing of the original lattice. The
respective magnetic currents are defined as

k(n)µ (sn) =
1

2
ϵµνρσ∂νn

(n)
ρσ (sn + µ̂)

=

n−1∑
i,j,l=0

kµ(nsn

+(n− 1)µ̂+ iν̂ + jρ̂+ lσ̂), (23)

n(n)
ρσ (sn) =

n−1∑
i,j=0

nρσ(nsn + iρ̂+ jσ̂),

where sn is a site number on the reduced lattice. Af-
ter the block-spin transformation, the number of short
lattice artifact loops decreases while loops having larger
magnetic charges appear. We show an example of the
loop length and loop number distribution of the four step
(n = 4 ) blocked monopoles in TableV with respect to
the same original vacuum as in TableIV.

B. Numerical results

Now let us show the simulation results with respect
to VNABI (Abelian-like monopole ) densities. Since
monopoles are three-dimensional objects, the density is
defined as follows:

ρ =

∑
µ,sn

√∑
a(k

a
µ(sn))

2

4
√
3Vnb3

, (24)

where Vn = V/n4 is the 4 dimensional volume of the
reduced lattice, b = na(β) is the spacing of the reduced
lattice after n-step blockspin transformation. sn is the
site on the reduced lattice and the superscript a denotes a
color component. Note that

∑
a(k

a
µ)

2 is gauge-invariant
in the continuum limit. In general, the density ρ is a
function of two variables β and n.
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1. Scaling under the block-spin transformations

It is very interesting to see that more beautiful
and clear scaling behaviors are observed when we plot
ρ(a(β), n) versus b = na(β). One can see a univer-
sal function ρ(b) for β = 3.0 ∼ 3.9 (β = 3.3 ∼ 3.7)
and n = 1, 2, 3, 4, 6, 8, 12 (n = 1, 2, 3, 4, 6) on 484 (244)
lattice[9]. Namely ρ(a(β), n) is a function of b = na(β)
alone. Thus we observe clear indication of the continuum
(a(β) → 0) limit for the lattice VNABI studied in this
work.

FIG. 5: Comparison of the VNABI (Abelian-like
monopoles) densities versus b = na(β) in MCG,
AWL, DLCG and MAU1 cases. Here ρ(b) is a
scaling function (??) determined from the

Chi-Square fit to the IF monopole density data in
MCG. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5  0  0.5  1  1.5  2  2.5  3  3.5  4  4.5F

(3
)

b=a(β)

2MA1+MA3 and 3MCGNearest-neighbor coupling F(3)13 2MA1+MA3 monopole23 2MA1+MA3 monopole33 2MA1+MA3 monopole43 2MA1+MA3 monopole63 2MA1+MA3 monopole83 2MA1+MA3 monopole123 2MA1+MA3 monopoleMCG all monopoles
2. Gauge dependence

Since
∑

a(k
a
µ)

2 should be gauge-invariant, we compare
the data in different smooth gauges. Look at Fig.5, which
show the comparison of the data in four gauges (MCG,
MAW, DLCG and MAU1). One can see that data ob-
tained in these four different gauges are in good agree-
ment with each other providing strong indication of gauge
independence. This is the main result of this work. Note
that in MAU1 gauge, the global color invariance is bro-
ken and usually off-diagonal color components of gauge
fields are said to have large lattice artifacts. However
here we performed additional U1 Landau gauge-fixing
with respect to the remaining U(1) symmetry after MA
fixing, which seems to make the vacua smooth enough as
those in MCG gauge case. The fact that the scaling func-
tions ρ(b) obtained in MCG gauge can reproduce other
three smooth-gauge data seems to show that it is near
to the smallest density corresponding to the continuum
limit without large lattice artifact effects.

V. INVERSE MONTE-CARLO METHOD AND
INFRARED EFFECTIVE MONOPOLE

ACTION[15]

A. Inverse Monte-Carlo method

We can determine the infrared monopole action start-
ing from the monopole current ensemble

{
kaµ(s)

}
with

the aid of an inverse Monte-Carlo method. The details
of the inverse Monte-Carlo method are reviewed in Ap-
pendix of Ref.[15].
Then the monopole action can be written as a linear

combination of these operators:

S[k] =
∑
i

F (i)Si[k], (25)

where F (i) are coupling constants. The effective
monopole action is defined as follows:

e−S[k] =

∫
DU(s, µ)e−S(U)

×
∏
a

δ(kaµ(s)−
1

2
ϵµνρσ∂νn

a
ρσ(s+ µ̂)),

where S(U) is the gauge-field tadpole improved action.
We can determine the effective monopole action also
starting from the blocked monopole current ensemble{
Kµ(s

(n))
}
(23). Then one can obtain the renormaliza-

tion group flow in the coupling constant space.
Practically, we have to restrict the number of interac-

tion terms. It is natural to assume that monopoles which
are far apart do not interact strongly and to consider only
short-ranged local interactions of monopoles. The form
of actions adopted here are shown in Appendix of [15].
Actually, we study here in details assuming two-point
monopole interactions alone, although some four and six
point interactions without any color mixing are studied
for comparison.

B. Numerical results

The 10 coupling constants F (i) (i = 1 ∼ 10) of
quadratic interactions are fixed very beautifully for lat-
tice coupling constants 3.0 ≤ β ≤ 3.9 and the steps of
blocking 1 ≤ n ≤ 12. Remarkablly they are all expressed
by a function of b = na(β) alone, although they originally
depend on two parameters β and n. Namely the scal-
ing is satisfied and the continuum limit is obtained when
n → ∞ for fixed b = na(β). The obtained action can be
considered as the projection of the perfect action onto the
plane composed of 10 quadratic coupling constants. The
perfect monopole action draws a unique trajectory in the
multi-dimensional coupling-constant space. To see if such
a behavior is realized in our case, we plot the renormal-
ization group flow line of our data projected onto some
two-dimensional coupling-constant planes. These behav-
iors are shown for the first 3 dominant couplings in Fig.6.
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FIG. 6: The renoramlization-group flow projected onto the
two-dimensional coupling constant planes in MCG

on 484. 0 0.2 0.4 0.6 0.8 1 1.2 1.4  0  0.5  1  1.5  2  2.5  3F
(2
)

F(1)

Renormalization-flow on F(1)-F(2)13 MCG monopole23 MCG monopole33 MCG monopole43 MCG monopole63 MCG monopole83 MCG monopole123 MCG monopole
We studied gauge dependence by comparing the data

in MCG, DLCG, AWL and MAU1. All data seem to
be equal as seen for example from Fig7. This means
that if scaling behaviors are obtained and the effective
monopole action is on the renormalized trajectory with
the introduction of some smooth gauge fixing, the tra-
jectory obtained becomes universal. In fact, the renor-
malized trajectory represents the effective action in the
continuum limit and gauge dependence should not exist
in the continuum. It is exciting to see that this natu-
ral expectation is realized actually at least for larger b

regions b ≥ 0.5 (σ
−1/2
phys ).

C. Blocking from the continuum limit

The infrared effective action determined above numeri-
cally shows a clear scaling, that is, a function of b = na(β)
alone and it can be regarded as an action in the contin-
uum limit. But it is an action still formulated on a lattice
with the finite lattice spacing b = na(β). Hence vari-
ous symmetries such as rotational invariance of physical
quantities in the continuum limit is difficult to observe,
since the action itself does not satisfy, say, the rotational
invariance. One has to consider a perfect operator in
addition to a perfect action on b lattice in order to re-
produce a symmetry such as rotational invariance in the
continuum limit [16, 17]. It is highly desirable to get a
perfect action formulated in the continuum space-time
which reproduce the same physics at the scale b as those
obtained by the above perfect action formulated on the b
lattice. If such a perfect action in the continuum space-
time is given, the rotational invariance of physical quan-
tities is naturally reproduced with simple operators such
as a simple Wilson loop, since the action also respects
the invariance.

If the infrared effective monopole action is quadratic,

FIG. 7: The coupling constants of the self and the
nearest-neighbor interactions in the effective

monopole action versus b = na(β) in MAU1 and
MCG on 484. The sum of each coupling constants
with respect to three color components are shown. 0 2 4 6 8 10  0  0.5  1  1.5  2  2.5  3  3.5  4  4.5F

(1
)

b=a(β)

2MA1+MA3 and 3MCGSelf coupling F(1)13 2MA1+MA3 monopole23 2MA1+MA3 monopole33 2MA1+MA3 monopole43 2MA1+MA3 monopole63 2MA1+MA3 monopole83 2MA1+MA3 monopole123 2MA1+MA3 monopoleMCG all monopoles 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5  0  0.5  1  1.5  2  2.5  3  3.5  4  4.5F
(2
)

b=a(β)

2MA1+MA3 and 3MCGNearest-neighbor coupling F(2)13 2MA1+MA3 monopole23 2MA1+MA3 monopole33 2MA1+MA3 monopole43 2MA1+MA3 monopole63 2MA1+MA3 monopole83 2MA1+MA3 monopole123 2MA1+MA3 monopoleMCG all monopoles 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5  0  0.5  1  1.5  2  2.5  3  3.5  4  4.5F
(3
)

b=a(β)

2MA1+MA3 and 3MCGNearest-neighbor coupling F(3)13 2MA1+MA3 monopole23 2MA1+MA3 monopole33 2MA1+MA3 monopole43 2MA1+MA3 monopole63 2MA1+MA3 monopole83 2MA1+MA3 monopole123 2MA1+MA3 monopoleMCG all monopoles
it is possible to perform analytically the blocking from
the continuum and to get the infrared monopole action
formulated on a coarse b = na(β) lattice [16, 17]. Perfect
operators are also obtained.

Let us start from the following action composed of
quadratic interactions between magnetic monopole cur-
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rents. It is formulated on an infinite lattice with very
small lattice spacing a:

S[k] =
∑
s,s′,µ

kµ(s)D0(s− s′)kµ(s
′). (26)

Here we omit the color index. Since we are starting from
the region very near to the continuum limit, it is natural
to assume the direction independence of D0(s−s′). Also
we adopt only parallel interactions, since we can avoid
perpendicular interactions from short-distant terms us-
ing the current conservation. Moreover, for simplicity,
we adopt only the first three Laurent expansions, i.e.,
Coulomb, self and nearest-neighbor interactions. Explic-
itly, D0(s − s′) is expressed as ᾱδs,s′ + β̄∆−1

L (s − s′) +
γ̄∆L(s− s′) where ᾱ, β̄ and γ̄ are free parameters. Here
∆L(s − s′) = −

∑
µ ∂µ∂

′
µδs,s′ . Including more compli-

cated quadratic interactions is not difficult.

When we define an operator on the fine a lattice, we
can find a perfect operator along the projected flow in
the a → 0 limit for fixed b.

Let us start from

⟨Wm(C)⟩ =

∞∑
kµ(s)=−∞
∂′
µkµ(s)=0

exp{−
∑
s,s′,µ

kµ(s)D0(s− s′)kµ(s
′)

+2πi
∑
s,µ

Nµ(s)kµ(s)}

×
∏

s(n),µ

δ

(
Kµ(s

(n))− Bkµ(s
(n))

)
/Z[k], (27)

where Bkµ
(s(n)) ≡

∑n−1
i,j,l=0 kµ(s(n, i, j, l)) (23). Note

that the monopole contribution to the static potential is
given by the term in Eq.(27)

Wm(C) = exp

(
2πi

∑
s,µ

Nµ(s)kµ(s)

)
,

Nµ(s) =
∑
s′

∆−1
L (s− s′)

1

2
ϵµαβγ∂αS

J
βγ(s

′ + µ̂),(28)

where SJ
βγ(s

′ + µ̂) is a plaquette variable satisfying

∂′
βS

J
βγ(s) = Jγ(s). Here Jµ(s) is an Abelian integer-

charged electric current corresponding to an Abelian Wil-
son loop. See Ref. [17].

The cutoff effect of the operator (27) is O(a) by def-
inition. This δ-function renormalization group transfor-
mation can be done analytically. Taking the continuum
limit a → 0, n → ∞ (with b = na is fixed) finally, we ob-
tain the expectation value of the operator on the coarse

lattice with spacing b = na(β) [16]:

⟨Wm(C)⟩ = exp

{
−π2

∫ ∞

−∞
d4xd4y

∑
µ

Nµ(x)

× D−1
0 (x− y)Nµ(y) + π2b8

∑
s(n),s(n)′

µ,ν

Bµ(bs
(n))

× Dµν(bs
(n) − bs(n)

′
)Bν(bs

(n)′)

}

×
∞∑

b3Kµ(bs)=−∞
∂′
µKµ=0

exp

{
−S[Kµ(s

(n))]

+2πib8
∑

s(n),s(n)′

µ,ν

Bµ(bs
(n))Dµν(bs

(n) − bs(n)
′
)

× Kν(bs
(n)′)

}/ ∞∑
b3Kµ(bs)=−∞

∂′
µKµ=0

Z[K, 0], (29)

where

Bµ(bs
(n)) ≡ lim

a→0
n→∞

a8
∑
s,s′,ν

Π¬µ(bs
(n) − as)

×

{
δµν − ∂µ∂

′
ν∑

ρ ∂ρ∂
′
ρ

}
× D−1

0 (as− as′)Nν(as
′), (30)

Π¬µ(bs
n − as) ≡ 1

n3
δ
(
nas(n)µ + (n− 1)a− asµ

)
×

∏
i(̸=µ)

(
n−1∑
I=0

δ
(
nas

(n)
i + Ia− asi

))
.

S[Kµ(s
(n))] denotes the effective action defined on the

coarse lattice:

S[Kµ(s
(n))] = b8

∑
s(n),s(n)′

∑
µ,ν

Kµ(bs
(n))

× Dµν(bs
(n) − bs(n)

′
)Kν(bs

(n)′). (31)

Since we take the continuum limit analytically, the oper-
ator (29) does not have no cutoff effect. For clarity, we
have recovered the scale factor a and b in (29), (30) and
(31).

Performing the BKT transformation explained in Ap-
pendix B of Ref. [17] on the coarse lattice, we can get the
loop operator for the static potential in the framework of
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the string model:

⟨Wm(C)⟩ = ⟨Wm(C)⟩cl

× 1

Z

∞∑
σµν (s)=−∞
∂[ασµν](s)=0

exp

{
− π2

∑
s,s′
µ̸=α
ν ̸=β

σµα(s)∂α∂
′
β

× D−1
µν (s− s1)∆

−2
L (s1 − s′)σνβ(s

′)

−2π2
∑
s,s′
µ,ν

σµν(s)∂µ∆
−1
L (s− s′)Bν(s

′)

}
, (32)

where σνµ(s) ≡ ∂[µsν] is the closed string variable satis-
fying the conservation rule

∂[ασµν] = ∂ασµν + ∂µσνα + ∂νσαµ = 0. (33)

The classical part ⟨Wm(C)⟩cl is expressed by

⟨Wm(C)⟩cl = exp

{
− π2

∫ ∞

−∞
d4xd4y

∑
µ

Nµ(x)

× D−1
0 (x− y)Nµ(y)

}
. (34)

FIG. 8: Strong-coupling calculations of the Wilson loops

+ ++

FIG. 9: Comparison of monopole density from MCG
numrical data and that from the perfect action 0.1 1 10 100 1000  0  0.5  1  1.5  2  2.5  3  3.5  4  4.5Square monopole density b=na(β)Squared monopole densityMCG squared monopole densityfrom theoretical monopole action

D. Analytic evaluation of non-perturbative
quantities

1. Parameter fitting

To derive non-perturbative physical quantites analyt-
ically, we have to fix first the propagator D0(s) in (27)
of the continuum limit. It can be done by comparing
D−1

µν (s− s′) in Eq.(31) with the set of coupling constants
F (i) (i = 1 ∼ 10) of the monopole action determined
numerically in Eq.(25).
D0(s − s′) in the monopole action (27) is assumed to

be ᾱδs,s′ + β̄∆−1
L (s− s′) + γ̄∆L(s− s′). We can consider

more general quadratic interactions, but as we see later,
this choice is almost sufficient to derive the IR region of
SU(2) gluodynamics.
The inverse operator of D0(p) = ᾱ+ β̄/p2 + γ̄p2 takes

the form

D−1
0 (p) = κ

(
m2

1

p2 +m2
1

− m2
2

p2 +m2
2

)
, (35)

where the new parameters κ, m1 and m2 satisfy κ(m2
1 −

m2
2) = γ̄−1,m2

1 +m2
2 = ᾱ/γ̄,m2

1m
2
2 = β̄/γ̄.

Using Eq.(35) and performing the First Fourier trans-
form(FFT) on a momentum lattice for the several input
values κ, m1 and m2 we calculate the momentum repre-
sentation of the blocked monopole action Dµν(p).
To be noted, the three parameters as a function of

b = na(β) can not be uniquely determined. Moreover
m2/b is found to correpond to the mass of the lowest
scalar glueball. Hence we assume

• m1/m2 = 10 for all b = na(β) regions.

• m2/b ∼ 1.8 correponding to M0++ ∼ 3.7
√
σphys.

• The string tension calculated analytically is as near
as possible to the physical string tension σphys and
shows scaling, namely σ/σphys is constant for all
b = na(β) regions considered.

Table VI shows the results of the best fit. With the
parameters determined, the first 5 two-point interactions
are fairly well reproduced for large b > 1.0 regions.

2. The string tension

Let us evaluate the string tension using the perfect
operator (32) [16]. The plaquette variable SJ

αβ in Eq.(28)

for the static potential V (Ib, 0, 0) is expressed by

SJ
αβ(z) = δα1δβ4δ(z2)δ(z3)θ(z1)

× θ(Ib− z1)θ(z4)θ(Tb− z4). (36)

We have seen that the monopole action on the dual lat-
tice is in the weak coupling region for large b. Then
the string model on the original lattice is in the strong
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TABLE VI: Best parameters fitted

b = na(β) 0.5 1 1.5 2 2.5 3 3.5 4 4.5
κ 0.117504 0.470017 1.057538 1.880067 2.937605 4.230151 5.757705 7.520268 9.51784
m1 9 18 27 36 45 54 63 72 81
m2 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1
ᾱ 8.682261 2.170565 0.964696 0.542641 0.34729 0.241174 0.177189 0.13566 0.107188
β̄ 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001
γ̄ 1.06e-01 6.63e-03 1.31e-03 4.15e-04 1.70e-04 8.19e-05 4.42e-05 2.59e-05 1.62e-05

coupling region. Therefore, we evaluate Eq.(32) by the
strong coupling expansion. The method can be shown
diagrammatically in Figure 7.

As explicitly evaluated in Ref. [16], the dominant clas-
sical part of the string tension coming from Eq. (34) is

σcl =
πκ

2b2
ln

m1

m2
. (37)

This is consistent with the analytical results in Type-2
superconductor. The two constants m1 and m2 may be
regarded as the coherence and the penetration lengths.

The ratio
√
σcl/σphys using the optimal values κ, m1

and m2 given in Table VI becomes a bit higher, namely
about 1.3 for all b regions considered. As shown previ-
ously [16], quantum fluctuations are so small to recover
the difference. This is due mainly to that the assumption
of 10 quadratic monopole couplings alone is too simple.

Note that the rotational invariance of the static poten-
tial is maintained by the calculation using the classical
part as naturally expected from the perfect action. For
example, the static potential V (Ib, Ib, 0) can be written
as

V (Ib, Ib, 0) =

√
2πκIb

2
ln

m1

m2
. (38)

The potentials from the classical part take only the lin-
ear form and the rotational invariance is recovered com-
pletely even for the nearest I = 1 sites.

3. The lowest scalar glueball mass

We consider here the following U(1) singlet and Weyl
invariant operator

Ψ(t) = L−3/2
∑
x⃗

Re (Ψ12 +Ψ23 +Ψ31) (x⃗, t) (39)

on the a-lattice at timeslice t. Here Ψij(x⃗, t) is an na×na
abelian Wilson loop and L stands for the linear size of the
lattice. One can check easily that this operator carries
0++ quantum number. Then we evaluate the connected
two point correlation function of Ψ by using the string
model just as done in the case of the calculations of the
string tension. It turns out that the quantum correction
is also negligibly small for large b. Refer to the paper [17]

for details. Assuming the lowest mass gap obtained by
the Ψ operator (39) for finite b is the scalar glueball mass,
we get the lowest scalar glueball mass asM0++ = 2m2. In
the best-fit parameters listed in Table VI, we have fixed
m2 so to reproduceM0++/σphys ∼ 3.7 which is consistent
with the direct calculations done in Ref. [18].

4. Monopole density distribution

As shown in our previous work [9], the monopole den-
sity

r(b) ≡ ρ

b3
=

1

4
√
3V b3

∑
s,µ

√∑
a

(Ka
µ(s))

2 (40)

shows beautiful scaling behaviors in smooth gauges such
as MCG, where V is the lattice volume. Namely the
monopole density (40) can be written in terms of a unique
function r(b) of b = na(β).
Now we have derived the infrared effective monopole

action showing also beautiful scaling. It is interesting to
evaluate the monopole density from the effective action
analytically. Since the square-root operator is rather dif-
ficult to evaluate analytically, we consider the squared
monopole density defined as

R(b) ≡ 1

4V b3

∑
s,µ

(
∑
a

(Ka
µ(s))

2) (41)

The squared density R(b) is plotted in Fig.9 in com-
parison with that calculated numerically with the help
of the MCG data obtained in Ref. [9]. One can see a

rough agreement for b = na(β) > 1.2 (σ
−1/2
phys ). The dif-

ference may comes again from the simple assumption of
10 quadratic interactions alone adopted here. Anyway,
the features are new found in the global color-invariant
smooth gauge like in MCG.
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