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Abstract

As liquid water turns into solid ice or gaseous steam, phase transition phenomena exist in
quantum chromodynamics (QCD). However, even basic questions such as phase transition points
of QCD have not been revealed yet due to the strong coupling of QCD. This paper is devoted
to report recent calculations of Lee-Yang zeros for investigation of phase transition points from
the canonical approach in lattice QCD and a QCD effective theory by using a supercomputer,
OCTOPUS.

1. Introduction

The role of Quantum Chromodynamics (QCD), the theory of the strong interaction, at
finite temperature and density is getting more and more important as it provides basic inputs in
the fundamental questions of the universe such as the matter generation in the early universe,
formation of galaxies and stars, and mysterious stellar objects such as neutron stars and black-
halls. Especially the latter objects are under active discussions due to the recent observation of
gravitational waves [1, 2]. There temperatures and/or densities reach around 1010 times and/or
1015 times higher than those on the earth, respectively.

Experimentally, those problems are approached by the high energy experiments at such as
J-PARC (KEK/JAEA), FAIR (GSI) and NICA (JINR), which will be expected to operate in
the near future. Theoretically, lattice QCD is known as an ideal and almost unique method to
perform first principle calculations of QCD.

However, lattice QCD suffers from the sign problem at finite density: the fermion determinant
detD(µq) at finite quark chemical potential is complex in general, [detD(µq)]

∗ = detD(−µ∗
q),

and consequently, it is impossible to apply the conventional Monte Carlo method. Many methods
have been proposed toward avoiding the sign problem. Meanwhile, a method called the canonical
approach [3] has been recently developed rapidly with multiple-precision arithmetic [4–11]. In
this article, we introduce the canonical approach and show how the method provides a promising
tool to solve the problems. In this research the use of high-performance supercomputer with
good simulation code is indispensable. Supercomputer at RCNP provides such opportunities.

2. Canonical approach

The canonical approach takes advantage of the fact that the fermion determinant at pure
imaginary chemical potential µq = iµqI (µqI ∈ R) is real, [detD(iµqI)]

∗ = detD(iµqI). Because
we can calculate physical quantities without the sign problem at pure imaginary µq, information
at physical real finite chemical potential is extracted by performing Fourier transforms.
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Figure 1: Quark number n dependence of the canonical partition function Zn = Z(n)/Z(0). Red circles and
blue crosses are results in the double-precision and multiple-precision arithmetics, respectively. The cancellation
of significant digits in Zn is not seen in the simulation in 5,000 significant digits.

Let us begin with a brief review of the canonical approach. The grand canonical partition
function ZGC(µq, T, V ) at µq, temperature T and volume of the system V can be written as

ZGC(µq, T, V ) =

∞∑
n=−∞

ZC(n, T, V )ξnq , (1)

where ξq is the quark fugacity defined by ξq = eµq/T and ZC(n, T, V ) are the canonical partition
functions. Applying Fourier transforms to ZGC at the pure imaginary µq, we obtain the canonical
partition functions,

ZC(n, T, V ) =

∫ 2π

0

dθ

2π
e−inθZGC(µq = iµqI , T, V ) , θ = µqI/T . (2)

Since the ZGC(iµqI , T, V ) can be calculated with the conventional Monte Carlo method free
from the sign problem, we can obtain the ZGC(µq, T, V ) at physical real µq though ZC .

The idea of the canonical approach was already introduced by Hasenfratz and Toussaint in
1992 [3]. However, due to high frequencies of e−inθ at large n in Fourier transforms, ZC cannot
be evaluated with accuracy. Apparently, there is no the sign problem in the canonical approach,
but is the problem for high frequencies, so the problem was recognized as the residual sign
problem. Therefore, it was considered that the canonical approach was not practical for use.

In 2016, it was discovered that the problem is not in the sign problem but in the cancellation
of significant digits [4]. Although simulations are usually performed in double-precision arith-
metic, i.e. 16 significant digits in decimal notation, the cancellation of significant digits occurs
frequently in the Fourier transforms such as

1.234567890123456− 1.234567890123455 = 1× 10−15 . (3)

In this example, we no longer trust only the results within one significant digit. On the contrary,
multiple-precision arithmetic makes the cancellation of significant digits suppress:

1.23456789012345612345678− 1.23456789012345501234567 = 1.11111111× 10−15 , (4)

where the example is in 24 significant digits in decimal notation.
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In 2017, the integration method [6] was proposed as a useful method to extract ZC for further
large n. It is well known that the imaginary number density nqI defined by nq = inqI can be
approximated by a Fourier series,

nqI

T 3
(θ) =

Nsin∑
k=1

fk sin(kθ) , (5)

with a small Nsin [13, 14]. Fitting the Fourier series to nqI , we can evaluate ZGC at the pure
imaginary µq in good approximation from

ZGC(iµqI , T, V ) = C exp

{
−V

∫ θ

0
dθ′ nqI(θ

′)

}
, (6)

where C is an integration constant.
We use the integration method and perform the Fourier transforms in 5,000 significant digits

in decimal notation with multiple-precision arithmetic. As shown in Fig. 1, the cancellation of
significant digits in Zn = Z(n)/Z(0) is not seen in the simulation in 5,000 significant digits, al-
though the cancellation occurs above n = 100 in the simulation with double-precision arithmetic.
Considering the fact that Zn is only evaluated up to n = 10 in the canonical approach without
the integration method with double-precision arithmetic, the developed canonical approach can
be a promising method for the investigation of phase transition points at finite density.

3. Lee-Yang zeros

In numerical calculations, the fugacity expansion of the grand canonical partition function
in Eq. (1) is truncated with a finite value Nmax as

ZGC(µq, T, V ) =

Nmax∑
n=−Nmax

ZC(n, T, V )ξnq . (7)

Since Nmax means the maximal value of the net-quark number in the system, DOF of the system
are limited by a finite Nmax. Therefore, we need to take the limit Nmax → ∞ so that a system
with the finite DOF never has a phase transition in the real finite chemical potential.

The theorems of Yang and Lee [15, 16] are of universal and powerful use to investigate
phase structures for a system with the finite DOF. The so-called Lee-Yang zeros (LYZs), which
are zeros of grand canonical partition functions in complex fugacity plane provide us various
information of phase transitions. In case of Eq. (7), LYZs are given as roots of the polynomial
equation of degree of 2Nmax,

Nmax∑
n=−Nmax

ZC(n, T, V )ξn+Nmax
q = 0 , (8)

in the complex ξq plane. As DOF increases, a distribution of LYZs becomes to form one-
dimensional curves in the complex ξq plane. If there is a point that LYZs accumulate and
are stable for increasing DOF, the point represents a phase transition point. Therefore, we
investigate the DOF dependence of distributions of LYZs near the positive real axis of ξq.
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Figure 2: The Nmax dependences of LYZs at T/Tc = 0.93 in the complex ξB plane.

4. Lattice QCD simulations

We report results of LYZs of lattice QCD simulations in this section. We generate the gauge
field configurations in full QCD by using the hybrid Monte Carlo method. Simulations are
carried out on a spacial lattice size Ns = 16 and a temporal lattice size Nt = 4 at temperatures
T/Tc = 0.84-1.35 with the mass ratio of pion and ρ meson, mπ/mρ = 0.80. Tc is the pseudo-
critical temperature at zero chemical potential.

The numerical calculations were partially carried out on a GPU supercomputer, OCTOPUS
at RCNP/CMC of Osaka University. Because GPUs are good at a massively parallel computing,
our GPU program is constructed to be computed on 163 × 4 (=16,384) parallels. In order to
calculate the Fourier transforms and LYZs without the cancelation of the significant digits,
we implement a multiple-precision arithmetic package, FMLIB [17]. Calculations of LYZs are
mainly performed on the general CPU job class in OCTOPUS, which memory size is limited to
192 [GByte]. However, calculations of LYZs at high Nmax such as Nmax = 2048, which results
are not reported in this paper though, need more memory. The large-scale shared-memory job
class, which memory size is limited to 6 [TByte], is enable us to calculate LYZs at high Nmax.

Figure 2 shows the Nmax dependence of LYZs at T/Tc = 0.93 in the complex ξB(= ξ3q )
plane. Because we concern about phase transition points at the real chemical potential, we
focus the behavior of the right edge of LYZs, which is defined by a LYZ to be min(Im[ξB]) in the
first quadrant. As Nmax increases, the right edges of LYZs approach to the positive real axis.
To extrapolate linear or quadratic functions, we can roughly estimate that a phase transition
point exists around µB/T ∼ 5-6 at T/Tc = 0.93. Here, we use the charge-parity invariant,
Z(n) = Z(−n): if ξB = α is a LYZ, ξB = α−1 is also a LYZ.

5. Simulations in the NJL model

Although the phase transition points have been estimated from distributions of LYZs from
lattice QCD, a problem of extrapolation procedure to physical situations of infinite DOF remains
as a matter to be discussed. QCD effective theories are superior to lattice QCD in investigation
of the problem because phase transition structures at the real chemical potential have been
already discovered in some of the QCD effective theories. Phase structures of the Nambu-Jona-
Lasinio (NJL) model [18, 19], which is a typical one of the effective theories of QCD, are also
investigated by many studies. Therefore, the NJL model is very useful to check the extrapolation
procedure of simulations. In this section, we would like to search the exploration procedure of
LYZs from finite DOF to infinite DOF in the canonical approach of the NJL model.

4



Figure 3: The Nmax dependence of LYZs at T = 49 [MeV] in the complex ξq plane. The blue crosses stand for
the right edges of LYZs. The red filled circle corresponds to the expected critical point (CP) calculated at the
real finite chemical potential.

First, we calculate the imaginary number density in the NJL model as it was done in the lat-
tice QCD simulations. By using the integration method and performing the Fourier transforms
with multiple-precision arithmetic, we obtain the canonical partition functions. After that, we
can show the Nmax dependence of LYZs, see Fig. 3. Only the right edges of LYZs are plotted
for each Nmax. We find that the right edges of LYZs pass over the expected critical point (CP)
calculated at the real chemical potential and go to the origin as Nmax increases. The reason why
the right edges approach not the CP but the origin in large-Nmax limit is that the imaginary
number density is approximated by a Fourier series in Eq. (5). In this case, phase transitions
do not occur in the real chemical potential.

To gain more insight, we try to fit the right edges of LYZs by the smooth curve,

y =
b
(
cx0 − dx20

)
x+ b

+ c (x− x0) + d (x− x0)
2 , (9)

where y = Im[ξq], x = Re[ξq] and b, c, d and x0 are fitting parameters. The fitting function is
basically constructed from the quadratic function like a Taylor expansion at x = x0. If there is
a phase transition point at x0 in the system, it is anticipated that the right edges of LYZs cross
the real axis at x0 at large-Nmax limit. However, since there is no phase transition in the system
due to the approximation in Eq. (5), the fitting function needs a correction term to be through
the origin. Therefore, we choose the correction term as the first term, which may be interpreted
as a finite Nsin effect. In Fig. 3, the fitting function is represented by the solid curve. As if to
prove that the first term is the finite Nsin effect, the curve subtracting the first term, which is
represented by the dotted curve, crosses the real axis at x0 = 1.33(14) × 10−3. The result is
consistent with the value of expected CP, ξCP = 1.26 × 10−3. Therefore, we can conclude that
the extrapolation procedure of LYZs is reasonable to extract the correct transition points from
the canonical approach.
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6. Summary

We have investigated phase transition points from LYZs calculated from the canonical ap-
proach of lattice QCD and the NJL model. As one of the results of the lattice QCD simulations,
we have estimated that a phase transition point exists around µB/T ∼ 5-6 at T/Tc = 0.93.

However, a problem of extrapolation procedure to physical situations of infinite DOF remains
as a matter to be discussed. Therefore, we have searched the problem with the NJL model.
Because phase transition structures at real µq of the NJL model have been already well known,
we can check whether the extrapolation procedure works well or not. As a result of the NJL
model, we have then succeeded in subtracting a term associated with approximation effect in the
integration method from fitted function of LYZs. We have found that the curve after subtracting
the term from the fitted function nicely reproduces the expected critical point in the NJL model.
The method can be applicable to lattice QCD simulations for better understanding of nature of
the QCD critical points.

Now, more realistic simulations on a spacial lattice size Ns = 24 with mπ/mρ = 0.48 are
ongoing on OCTOPUS. It will enable us to reveal realistic phase transitions around Tc with
the extrapolation procedure for LYZs. Moreover, in Ref.[20], it was demonstrated to extract
the canonical partition functions, Z(n), from the RHIC experimental data. By comparing Z(n)
of experiments with ones of lattice simulations, we can extract a temperature and chemical
potential of matter created in experiments, see also Ref. [9].

In addition, we aim to search phase structures at T/Tc ∼ 0.2 with lattice QCD in the near
future. Although computational resources for T/Tc ∼ 0.2 is roughly 5 times larger than ones
for T = Tc, the lattice QCD simulations must be able to approach to mysterious stellar physics
such as the neutron star.
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