Two-neutrino double- β decay within the mapped IBM

Kosuke Nomura Hokkaido University

Osaka, December 2023

Study of $\beta\beta$ decay

- Nature of neutrinos, test of fundamental symmetries, ...
- Experiments: GERDA, NEMO, KamLAND ...
- Variety of theoretical predictions (QRPA, LSSM, IBM, EDF, ab initio, etc.)

Avignone et al., RMP (2008), Agostini et al., RMP (2023), Engel, Menendez RPP (2017), etc.

This work

- Framework: EDF-to-IBM mapping
- $2\nu\beta\beta$ decay of 26 even-even nuclei
- No closure approximation: calculations for odd-odd nuclei

PHYSICAL REVIEW C 105, 044301 (2022)

Two-neutrino double- β decay in the mapped interacting boson model

Kosuke Nomura^{®*}

Contents

· Introduction, interacting boson model

 \cdot Low-lying structure of even-even and odd-odd nuclei

 $\cdot 2 \nu \beta \beta$ decay

Mean-field calculation

prolate deformation

Oblate deformation

... obtained from the relativistic energy density functional

Computing energy spectra

Intrinsic frame

lab. frame

Observables: Excitation spectra, EM properties, β , $\beta\beta$ decay?

Mean-field to IBM

Fermionic

Bosonic

- SCMF energy surface is mapped onto the IBM Hamiltonian
- Diagonalization of the mapped Hamiltonian yields energy spectra

KN et al. PRL101 (2008) 142501; PRC81 (2010) 044307

Interacting Boson Model

Arima, Iachello (1975)

Building blocks:

s, d bosons ~ $J = 0^+$, 2^+ collective pairs of valence nucleons

Hamiltonian:

$$\begin{aligned} \hat{H}_{\text{IBM}} &= \epsilon_d \left(\hat{n}_{d_\nu} + \hat{n}_{d_\pi} \right) + \kappa \, \hat{Q}_\nu \cdot \hat{Q}_\pi \\ & & & & \\ & & &$$

Geometry of the IBM

Energy surface:

$$E_{\rm IBM}(\beta,\gamma) = \langle \phi \, | \, \hat{H}_{\rm IBM} \, | \, \phi \rangle$$

... with boson coherent state

$$|\phi\rangle \propto \Pi_{\rho=\nu,\pi} \left[s_{\rho}^{\dagger} + \beta \cos \gamma d_{\rho,0}^{\dagger} + \frac{1}{\sqrt{2}} \beta \sin \gamma \left(d_{\rho,+2}^{\dagger} + d_{\rho,-2}^{\dagger} \right) \right]^{N_{\rho}} |0\rangle$$

Ginocchio-Kirson (1980)

IBM Hamiltonian is determined by

$$E_{\rm SCMF}(\beta,\gamma)\approx E_{\rm IBM}(\beta,\gamma)$$

KN et al. PRL101 (2008) 142501

Interacting Boson-Fermion-Fermion Model

neutron-proton interaction

$$\hat{V}_{\nu\pi} = 4\pi [v_{\rm d} + v_{\rm ssd} \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi}] \delta(\boldsymbol{r}) \delta(\boldsymbol{r}_{\nu} - \boldsymbol{r}_{0}) \delta(\boldsymbol{r}_{\pi} - \boldsymbol{r}_{0})$$
$$- \frac{1}{\sqrt{3}} v_{\rm ss} \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi} + v_{\rm t} \left[\frac{3(\boldsymbol{\sigma}_{\nu} \cdot \mathbf{r})(\boldsymbol{\sigma}_{\pi} \cdot \mathbf{r})}{r^{2}} - \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi} \right]$$

Iachello, Van Isacker, "The interacting boson-fermion model" (1991)

Boson-fermion interactions

exchange terms

direct terms

Building the IBFFM Hamiltonian

Microscopic input from DFT:

• PES : \hat{H}_{IBM}

- Spherical single (quasi) particle energies : \hat{H}_{F}
- Particle occupation probabilities : $\hat{V}_{\rm BF}$ and $\hat{V}_{\nu\pi}$

... remaining coupling constants of $\hat{V}_{
m BF}$ and $\hat{V}_{
u\pi}$ are fitted to data

KN et al. PRC93 (2016) 054305; PRC99 (2019) 034308

Low-lying structure

Energy surfaces of even-even nuclei

Mapped IBM energy surfaces

Energy spectra of even-even nuclei

Energy spectra of even-even nuclei

B(E2)s of parent nuclei

B(E2)s of daughter nuclei

Energy spectra of odd-odd nuclei

$2\nu\beta\beta$ decay

Calculation of NME

$$\begin{split} M_{2\nu} &= g_{\rm A}^2 \cdot m_e c^2 \bigg[M_{2\nu}^{\rm GT} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M_{2\nu}^{\rm F} \bigg], \qquad \qquad M_{2\nu}^{\rm GT} = \sum_N \frac{\langle 0_F^+ \| t^+ \sigma \| 1_N^+ \rangle \langle 1_N^+ \| t^+ \sigma \| 0_{1,I}^+ \rangle}{E_N - E_I + \frac{1}{2} (Q_{\beta\beta} + 2m_e c^2)}, \\ M_{2\nu}^{\rm F} &= \sum_N \frac{\langle 0_F^+ \| t^+ \| 0_N^+ \rangle \langle 0_N^+ \| t^+ \| 0_{1,I}^+ \rangle}{E_N - E_I + \frac{1}{2} (Q_{\beta\beta} + 2m_e c^2)}, \end{split}$$

GT and Fermi
operators
$$t^{\pm} \longmapsto \hat{T}^{F} = \sum_{j_{\nu}j_{\pi}} \eta_{j_{\nu}j_{\pi}}^{F} (\hat{P}_{j_{\nu}} \times \hat{P}_{j_{\pi}})^{(0)},$$
$$t^{\pm} \sigma \longmapsto \hat{T}^{GT} = \sum_{j_{\nu}j_{\pi}} \eta_{j_{\nu}j_{\pi}}^{GT} (\hat{P}_{j_{\nu}} \times \hat{P}_{j_{\pi}})^{(1)},$$
with \hat{P}_{j} given as one of $A_{j_{\rho}m_{\rho}}^{\dagger} = \zeta_{j_{\rho}} a_{j_{\rho}m_{\rho}}^{\dagger} + \sum_{j_{\rho}'} \zeta_{j_{\rho}j_{\rho}'} s_{\rho}^{\dagger} (\tilde{d}_{\rho} \times a_{j_{\rho}'}^{\dagger})_{m_{\rho}}^{(j_{\rho})}$

$$B_{j_\rho m_\rho}^{\dagger} = \theta_{j_\rho} s_\rho^{\dagger} \tilde{a}_{j_\rho m_\rho} + \sum_{j'_\rho} \theta_{j_\rho j'_\rho} \left(d_\rho^{\dagger} \times \tilde{a}_{j'_\rho} \right)_{m_\rho}^{(j_\rho)}$$

and their H.C.

 $Q_{\beta\beta}$ values

$$Q_{\beta\beta} = 2(m_n - m_p - m_e)c^2 + E_{gs}^I - E_{gs}^F$$

- $Q_{\beta\beta,\text{th}}$: calculated by using the IBM eigen energy

$$E_{\rm gs} = E_{\rm IBM}(0^+_1) + E_0$$

- $Q_{\beta\beta,\mathrm{ex}}$: experimental value

Nucleus	$Q_{\beta\beta,\mathrm{th}}$ (MeV)	$Q_{\beta\beta,\mathrm{ex}}$ (MeV)
⁴⁸ Ca	1.8479	4.2681
⁷⁶ Ge	0.8831	2.0391
⁸² Se	1.6356	2.9979
⁹⁶ Zr	4.1285	3.3560
¹⁰⁰ Mo	2.8338	3.0344
¹¹⁰ Pd	2.9081	2.0171
¹¹⁶ Cd	6.1166	2.8135
¹²⁴ Sn	-0.3795	2.2927
¹²⁸ Te	-0.1784	0.8680
¹³⁰ Te	1.4466	2.5290
¹³⁶ Xe	0.0989	2.4579
¹⁵⁰ Nd	3.3123	3.3714
¹⁹⁸ Pt	1.2895	1.0503

Effective g_A factors

$2\nu\beta\beta$ NME

		01	+			0	$^{+}_{2}$	
Decay	M	$M_{2\nu}^{\rm GT}$ $M_{2\nu}^{\rm F}$		rF 2v	$M_{2\nu}^{\rm GT}$		$M_{2 u}^{ m F}$	
	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$
$\overline{{}^{48}\text{Ca} \rightarrow {}^{48}\text{Ti}}$	0.060	0.042	0.024	0.016	0.325	0.066	-0.142	-0.075
$^{76}\text{Ge} \rightarrow {}^{76}\text{Se}$	0.040	0.034	-0.007	-0.007	0.097	0.078	-0.085	-0.069
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	-0.060	-0.045	0.017	0.015	0.124	0.070	-0.081	-0.064
96 Zr \rightarrow 96 Mo	0.139	0.154	-0.001	-0.001	0.053	0.063	-0.000	-0.000
$^{100}Mo \rightarrow {}^{100}Ru$	0.513	0.483	-0.000	-0.000	-0.007	-0.020	0.000	0.000
110 Pd \rightarrow 110 Cd	0.071	0.080	0.000	0.000	-0.052	-0.062	0.000	0.000
116 Cd $\rightarrow ^{116}$ Sn	0.148	0.275	0.001	0.001	0.032	-0.037	-0.001	-0.001
124 Sn \rightarrow 124 Te	0.123	0.074	-0.054	-0.045	0.345	-0.066	0.016	0.012
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	-0.139	-0.102	0.006	0.005	0.108	0.032	0.002	0.002
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	-0.041	-0.037	0.025	0.022	0.043	0.037	-0.019	-0.017
136 Xe \rightarrow 136 Ba	-0.173	-0.102	0.028	0.028	-2.807	0.010	0.009	0.001
150 Nd \rightarrow 150 Sm	-0.375	-0.369	0.000	0.000	-0.414	-0.390	-0.000	-0.000
198 Pt \rightarrow 198 Hg	-0.016	-0.016	0.001	0.001	-0.008	-0.010	-0.000	-0.000

Isospin symmetry breaking

 $\chi_F(0^+) = M_{2\nu}^F / M_{2\nu}^{GT}$

	Q_eta	β ,th	Q_{eta}	β,ex
Nucleus	$\chi_F(0_1^+)$	$\chi_F(0^+_2)$	$\chi_F(0_1^+)$	$\chi_F(0^+_2)$
⁴⁸ Ca	0.401	-0.435	0.390	-1.147
⁷⁶ Ge	-0.179	-0.874	-0.204	-0.888
⁸² Se	-0.287	-0.650	-0.328	-0.923
⁹⁶ Zr	-0.006	-0.003	-0.005	-0.002
¹⁰⁰ Mo	-0.000	-0.005	-0.000	-0.002
¹¹⁰ Pd	0.000	-0.000	0.000	-0.000
¹¹⁶ Cd	0.004	-0.021	0.002	0.022
¹²⁴ Sn	-0.443	0.046	-0.608	-0.182
¹²⁸ Te	-0.040	0.016	-0.051	0.050
¹³⁰ Te	-0.104	-0.093	-0.601	-0.460
¹³⁶ Xe	-0.163	-0.003	-0.278	0.061
¹⁵⁰ Nd	-0.001	0.000	-0.001	0.000
¹⁹⁸ Pt	-0.060	0.036	-0.059	0.030

Comparison with experiment

		$Q_{etaeta, ext{th}}$		$Q_{etaeta, ext{ex}}$			
Decay	$ M_{2\nu} $	$ M^{(\mathrm{I})}_{2 u} $	$ M^{({ m II})}_{2 u} $	$ M_{2\nu} $	$ M^{(\mathrm{I})}_{2 u} $	$ M^{({ m II})}_{2 u} $	$ M_{2\nu}^{\rm eff} $ [12]
48 Ca $\rightarrow {}^{48}$ Ti	0.073	0.020	0.034	0.051	0.014	0.024	0.035 ± 0.003
$^{76}\text{Ge} \rightarrow {}^{76}\text{Se}$	0.072	0.017	0.021	0.062	0.014	0.018	0.106 ± 0.004
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	0.115	0.026	0.031	0.087	0.020	0.024	0.085 ± 0.001
96 Zr \rightarrow 96 Mo	0.225	0.048	0.048	0.249	0.053	0.054	0.088 ± 0.004
$^{100}Mo \rightarrow {}^{100}Ru$	0.827	0.174	0.167	0.778	0.164	0.157	0.185 ± 0.002
$^{100}Mo \rightarrow {}^{100}Ru(0^+_2)$	0.011	0.002	0.002	0.032	0.007	0.007	0.151 ± 0.004
110 Pd \rightarrow 110 Cd	0.115	0.023	0.020	0.128	0.026	0.022	
$^{116}\text{Cd} \rightarrow {}^{116}\text{Sn}$	0.238	0.048	0.037	0.443	0.089	0.069	0.108 ± 0.003
124 Sn $\rightarrow ^{124}$ Te	0.253	0.050	0.035	0.164	0.032	0.022	
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	0.229	0.044	0.030	0.169	0.033	0.022	0.043 ± 0.003
$^{130}\text{Te} \rightarrow {}^{130}\text{Xe}$	0.091	0.017	0.011	0.081	0.016	0.010	0.0293 ± 0.0009
136 Xe \rightarrow 136 Ba	0.307	0.058	0.035	0.194	0.037	0.022	0.0181 ± 0.0006
150 Nd \rightarrow 150 Sm	0.604	0.111	0.055	0.594	0.109	0.054	0.055 ± 0.003
150 Nd $\rightarrow {}^{150}$ Sm(0 ⁺ ₂)	0.666	0.122	0.060	0.629	0.116	0.057	0.044 ± 0.005
198 Pt \rightarrow 198 Hg	0.026	0.004	0.001	0.027	0.005	0.001	

data: Barabash, Universe (2020)

Comparison with other predictions

Half-lives

	$ au_{1}^{(2)}$	$ au_{1/2}^{(2 u)}$ (yr), with $Q_{\beta\beta,\mathrm{th}}$			$ au_{1/2}^{(2\nu)}$ (yr), with $Q_{\beta\beta,\mathrm{ex}}$		
Decay	<i>g</i> A	$g_{ m A, eff}^{ m (I)}$	$g_{ m A, eff}^{ m (II)}$	<i>g</i> A	$g_{ m A, eff}^{({ m I})}$	$g_{ m A, eff}^{ m (II)}$	Expt. [12]
$\overline{{}^{48}\text{Ca} \rightarrow {}^{48}\text{Ti}}$	1.22×10^{19}	1.67×10^{20}	5.66×10^{19}	2.50×10^{19}	3.43×10^{20}	1.16×10^{20}	$5.3^{+1.2}_{-0.8} \times 10^{19}$
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	4.04×10^{21}	7.54×10^{22}	4.59×10^{22}	5.39×10^{21}	1.01×10^{23}	6.14×10^{22}	$(1.88 \pm 0.08) \times 10^{21}$
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	4.77×10^{19}	9.38×10^{20}	6.58×10^{20}	8.20×10^{19}	1.61×10^{21}	1.13×10^{21}	$(0.87^{+0.02}_{-0.01}) \times 10^{20}$
96 Zr \rightarrow 96 Mo	2.89×10^{18}	6.32×10^{19}	6.24×10^{19}	2.37×10^{18}	5.19×10^{19}	5.12×10^{19}	$(2.3 \pm 0.2) \times 10^{19}$
$^{100}Mo \rightarrow {}^{100}Ru$	4.42×10^{17}	9.95×10^{18}	1.09×10^{19}	5.00×10^{17}	1.12×10^{19}	1.23×10^{19}	$(7.06^{+0.15}_{-0.13}) \times 10^{18}$
$^{100}Mo \rightarrow {}^{100}Ru(0_2^+)$	1.29×10^{23}	2.91×10^{24}	3.17×10^{24}	1.59×10^{22}	3.57×10^{23}	3.90×10^{23}	$6.7^{+0.5}_{-0.4} \times 10^{20}$
110 Pd \rightarrow 110 Cd	5.51×10^{20}	1.32×10^{22}	1.86×10^{22}	4.40×10^{20}	1.06×10^{22}	1.49×10^{22}	0.4
$^{116}\text{Cd} \rightarrow {}^{116}\text{Sn}$	6.37×10^{18}	1.58×10^{20}	2.61×10^{20}	1.85×10^{18}	4.59×10^{19}	7.56×10^{19}	$(2.69 \pm 0.09) \times 10^{19}$
124 Sn \rightarrow 124 Te	2.83×10^{19}	7.37×10^{20}	1.50×10^{21}	6.76×10^{19}	1.76×10^{21}	3.57×10^{21}	· · ·
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	7.09×10^{22}	1.89×10^{24}	4.26×10^{24}	1.31×10^{23}	3.48×10^{24}	7.86×10^{24}	$(2.25 \pm 0.09) \times 10^{24}$
$^{130}\text{Te} \rightarrow {}^{130}\text{Xe}$	7.98×10^{19}	2.14×10^{21}	5.12×10^{21}	9.85×10^{19}	2.65×10^{21}	6.31×10^{21}	$(7.91 \pm 0.21) \times 10^{20}$
136 Xe $\rightarrow ^{136}$ Ba	7.41×10^{18}	2.05×10^{20}	5.75×10^{20}	1.86×10^{19}	5.16×10^{20}	1.45×10^{21}	$(2.18 \pm 0.05) \times 10^{21}$
150 Nd \rightarrow 150 Sm	7.54×10^{16}	2.23×10^{18}	9.16×10^{18}	7.78×10^{16}	2.30×10^{18}	9.45×10^{18}	$(9.34 \pm 0.65) \times 10^{18}$
$^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(0_2^+)$	5.21×10^{17}	1.54×10^{19}	6.33×10^{19}	5.84×10^{17}	1.73×10^{19}	7.10×10^{19}	$1.2^{+0.3}_{-0.2} \times 10^{20}$
198 Pt \rightarrow 198 Hg	9.59×10^{22}	3.42×10^{24}	5.43×10^{25}	8.95×10^{22}	3.20×10^{24}	$5.09 imes 10^{25}$	-0.2

data: Barabash, Universe (2020)

Sensitivity to single-particle energies

... compared with the phenomenological SPEs used for LSSM

Sensitivity to single-particle energies

		⁷⁶ C	Ge	82	Se
		DD-PC1	Phen.	DD-PC1	Phen.
	$M_{2\nu}^{\rm GT}$	0.034	0.069	-0.045	-0.103
0_{1}^{+}	$\tilde{M_{2\nu}^{F}}$	-0.007	-0.022	0.015	0.037
	$ M_{2\nu} $	0.062	0.134	0.087	0.203
	$M_{2\nu}^{ m GT}$	0.078	0.118	0.070	0.073
0_{2}^{+}	$\tilde{M_{2\nu}^{F}}$	-0.069	-0.101	-0.064	-0.108
-	$ M_{2\nu} $	0.194	0.292	0.177	0.225

Data (for 0⁺₁): ⁷⁶Ge: 0.106(4) ⁸²Se: 0.085(1)

... experimental Q_{etaeta} used for both calculations

Sensitivity to the EDFs

... from the mapped IBM using the Gogny-D1M EDF.

Sensitivity to the EDFs

		0_{1}^{+}			0_{2}^{+}		
EDF	$M_{2 u}^{ m GT}$	$M_{2 u}^{ m F}$	$ M_{2\nu} $	$M^{ m GT}_{2 u}$	$M_{2 u}^{ m F}$	$ M_{2\nu} $	
DD-PC1 D1M	$-0.016 \\ -0.074$	0.001 0.000	0.026 0.120	$-0.008 \\ -0.034$	$-0.000 \\ -0.000$	0.012 0.054	

... $Q_{\beta\beta}$ calculated for each model

Related studies

PHYSICAL REVIEW C 105, 044306 (2022)

 β decay and evolution of low-lying structure in Ge and As nuclei

Kosuke Nomura^{®*}

PHYSICAL REVIEW C 101, 044318 (2020)

β decay of even-A nuclei within the interacting boson model with input based on nuclear density functional theory

K. Nomura^{(1),*} R. Rodríguez-Guzmán,² and L. M. Robledo^{3,4}

PHYSICAL REVIEW C 101, 024311 (2020)

β decay of odd-A nuclei with the interacting boson-fermion model based on the Gogny energy density functional

K. Nomura^{1,*} R. Rodríguez-Guzmán,² and L. M. Robledo^{3,4}

Concluding remarks

- · Simultaneous description of low-lying states and $2\nu\beta\beta$ NME
- Further improvements by assessing model deficiency, coupling to higher-order deformations, shape coexistence...?
- \cdot Extension to the neutrinoless mode in progress

Thank you