The PIKACHU experiment

- Challenge to discover $2\nu\beta\beta$ of ¹⁶⁰Gd -

NME2023 workshop @RCNP Osaka

<u>Contents</u>

- 1. Double beta decay of ¹⁶⁰Gd
- 2. The PIKACHU experiment
 - GAGG scintillator
 - Measurement at Kamioka
 - Purification of the crystals
 - Background study with GEANT4
- **3. Summary and prospect**

Double beta decay of ¹⁶⁰Gd

- Gadolinium (Gd) is a rare earth element lanthanide with atomic number 64 and atomic weight is 157.3.
 - The ¹⁶⁰Gd isotope is one of the double beta-decay candidate nuclei.
 - ✓ Q-value : 1730 keV
 - ✓ Natural Abundance : 21.8%

<u>NME of ¹⁶⁰Gd $2\nu\beta\beta$ </u>

• Two theoretical models predict $2\nu\beta\beta$ half-lives whose predictions differ by about an order of magnitude.

 $T_{1/2}^{2\nu} \sim 6 \times 10^{21} \,\text{yr}$ [1] (pseudo-SU (3) model) $T_{1/2}^{2\nu} \sim 8 \times 10^{20} \,\text{yr}$ [2] (QRPA model)

Theoretical description of the double beta decay of ¹⁶⁰Gd

Jorge G. Hirsch,^{*} Octavio Castaños,[†] and Peter O. Hess[‡] Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 México 04510 D.F. [1] J. G. Hirsch et al., Phys.Rev. C 66, 015502 (2002)

Osvaldo Civitarese[§] Departamento de Física, Universidad Nacional de La Plata, c.c.67; 1900, La Plata, Argentina

> Global calculation of two-neutrino double- β decay within the finite amplitude method in nuclear density functional theory

[2] N. Hinohara et al., Phys. Rev. C 105, 044314 (2022)

Nobuo Hinohara ^{[],2,*} and Jonathan Engel ^{[],3,†} ¹Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan ²Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA

Previous research in Ukraine

- The world's best $\beta\beta$ search for ¹⁶⁰Gd is an experiment in Ukraine [3] using a 2-inch GSO scintillator.
- Alpha radiation from U/Th series impurities in the crystal appears to have been a serious background (BG).
- If the size and BG could be improved and the sensitivity increased by more than an order of magnitude, $2\nu\beta\beta$ could be found.

[3] F.A.Danevich et al., Nucl. Phys. A, Vol. 694, Iss. 1–2, 2001, Pages 375-391

5

The PIKACHU experiment

Pure Inorganic scintillator experiment in KAmioka for CHallenging Underground sciences

Double beta decay experiment ¹⁶⁰Gd using Ce:Gd₃Ga₂Al₃O₁₂ (GAGG)

- The aim is to increase the sensitivity by more than an order of magnitude over previous experiments using GSO and to discover 2vββ.
- Large GAGG crystals can be fabricated by collaborators at the Institute for Materials Research, Tohoku University.

PIKACHU comprises six Japanese research institutes and 15 collaborators!

Our strategy

- Large crystal: One GAGG crystal includes 3-4 times more ¹⁶⁰Gd than GSO.
- **High LY**: Six times higher light yield enable us better energy resolution.
- **PSD**: α and β can be completely separated by PSD_o
- Low BG tech.: Low radioactivity PMT for DM search etc.
- It is then necessary to remove radioactive impurities of the U/Th series inside the crystals.

	Ukraine	PIKACHU	
Detector	GSO scintillator	GAGG scintillator	
Amount of ¹⁶⁰ Gd	100 g	700 g (2 crysitals)	
LY	10,000 ph./MeV	60,000 ph./MeV	
Exp. period	2 years	2 years?	
BG level	Refer [3]	1/10 by PSD	
T _{1/2} limit	$T^{0\nu} > 2.3 \times 10^{21} \text{ y}$ $T^{2\nu} > 2.1 \times 10^{19} \text{ y}$	2vββ discovery	

Measurement in Kamioka 2021

- The detector was made by combining GAGG, PMT and a light guide.
- It was installed in the Pb/Cu shield in the Kamioka underground laboratory of Tohoku University near KamLAND.
- BG survey was carried out in 2021.

Date: 2021 7/4~7/6 DAQ period : 12 hours

- ✓ Shield : Pb 15cm &Cu 5cm thick
- ✓ GAGG : 6.5 cmφ × 14.5 cmL (3.2 kg)
- ✓ Waveform digitizer (1.25ns/bin)
- ✓ Threshold : ~200 keV

<u>β-Spectrum comparison with GSO</u>

Summary of BG level

VS Ukraine

 $\times 10$

 $\times 20$

 $\times 10$

VS Tsukuba

1/3

1/2

1/30

- Beta events are selected by PSD.
- BG reduced by moving to Underground.
- Our BG level is 20 time higher than in the previous research in Ukraine.

1000 keV

1730 keV

2615 keV

Impurity measurement of raw materials

- From the BG measurement in Kamioka, conventional GAGG crystals contain high U/Th-series radioactive impurities.
- The amounts of U/Th impurities in the main raw materials used to produce GAGG crystals were investigated using a Ge detector.
 - 1. Gadolinium oxide
 - 2. Gallium oxide
 - 3. Aluminium oxide
 - 4. Cerium oxide

Strategy to develop high purity GAGG

The following materials are used for growing large-sized GAGG crystals.

1.	Gadolinium oxide (Gd ₂ O ₃)	3.8 kg
2.	Gallium oxide (Ga ₂ O ₃)	2.0 kg
3.	Aluminum oxide (Al ₂ O ₃)	750 g
4.	Cerium oxide (CeO ₂)	15 g

- Pure Gd_2O_3 was made in cooperation with Nippon Yttrium (NYC), a company that makes Gd sulphate for SK-Gd. Purification by resin was carried out (¥50,000/kg).
- Al_2O_3 is difficult to purify because it is insoluble in acid; three types of high-purity Al_2O_3 are purchased; they are measured with a Ge detector and the one with the lowest impurity concentration is selected for use in the crystals.
- Ga_2O_3 and CeO_2 were also measured with a Ge detector, but these raw materials were sufficiently high purity, as described later.

Measurement of Gd₂O₃ powder

- Several raw materials were measured with a Ge detector to investigate the impurities.
- From left to right: original raw material, high-purity product from the same company, purified by NYC.

Unit is [mBq/kg]

	Gd_2O_3 (4N)	Gd_2O_3 (6N)	Gd ₂ O ₃ (pure)
²³⁸ U-chain (upepr)	1750 ± 221	-	< 16.3
²³⁸ U-chain (midd.)	< 4.55	< 5.28	< 0.43
²³⁵ U-chain (lower)	130 ± 40	< 11.4	-
²³² Th-chain	270 ± 12	10.3 ± 7.4	1.66 ± 0.41
⁴⁰ K	84.8 ± 28.7	90.0 ± 43.8	< 0.27
Sample weight	419 g	120 g	2005 g
Meas. Time	6.0 days	20.5 days	26.9 days

The purification process reduced the ²³⁸U impurity by more than two orders of magnitude!!

<u>Al₂O₃ Material investigation</u>

[mBq/kg]

	Original	Cleaned	А	В
²³⁸ U-chain (upper)	476 ± 43.5	94.1 ± 22.1	52.5 ± 24.2	< 28.26
²³⁸ U-chain (mid.)	< 4.92	< 2.45	3.09 ± 1.67	< 5.49
²³⁵ U-chain (lower)	< 13.04	< 4.39	< 4.63	< 3.54
²³² Th-chain	15.95 ± 24.37	< 9.54	16.4 ± 3.22	5.85 ± 2.80
⁴⁰ K	< 96.5	< 40.7	123.6 ± 18.5	< 36.58
Sample weihgt	480 g	749 g	1 kg	1 kg
Meas. Time	6.4 days	10.7 days	7.5 days	6.7 days

• The original raw materials are highly impure in the ²³⁸U series.

- The amount of ²³⁸U impurities was reduced as a result of trying dilute nitric acid cleaning, but not enough.
- Al₂O₃ raw materials from two new companies were purchased and compared, and it was found that Company B had the lowest impurity content.

<u>Ga₂O₃ & CeO₂ material investigation</u>

[mBq/kg]

Ga ₂ O ₃	Original	NYC (pure)
²³⁸ U-chain (upper)	< 69.17	< 38.75
²³⁸ U-chain (mid.)	< 9.86	< 2.49
²³⁵ U-chain (lower)	< 8.54	< 9.57
²³² Th-chain	< 10.76	< 7.56
¹³⁷ Cs	24.62 ± 3.08	< 1.44
Sample weight	444 g	1 kg
Meas. Time	4.7 days	2.7 days
Ce0,	Original	
²³⁸ U-chain (upper)	< 59.01	\checkmark Both Ga ₂ O ₂ and CeO ₂
²³⁸ U-chain (mid.)	< 3.63	were originally have
²³⁵ U-chain (upper)	< 4.62	low impurity
²³² Th-chain	< 4.35 ± 1.87	concentrations.
¹³⁷ Cs	< 1.54	

Summary of material impurities

[mBq/kg]

Old	Gd ₂ O ₃	Ga ₂ O ₃	Al ₂ O ₃
²³⁸ U-chain (upper)	1750 ± 221	< 69.17	476 ± 43.5
²³⁸ U-chain (mid.)	< 4.55	< 9.86	< 4.92
²³⁵ U-chain (lower)	130 ± 40	< 8.54	< 13.04
²³² Th-chain	270 ± 12	< 10.76	15.95 ± 24.37
⁴⁰ K	84.8 ± 28.7	< 76.7	< 96.5
New	Gd ₂ O ₃	Ga ₂ O ₃	Al ₂ O ₃
²³⁸ U-chain (upper)	< 16.3	< 38.75	< 28.26
²³⁸ U-chain (mid.)	< 0.43	< 2.49	< 5.49
²³⁵ U-chain (lower)	-	< 9.57	< 3.54
²³² Th-chain	1.66 ± 0.41	< 7.56	5.85 ± 2.80
⁴⁰ K	< 0.27	< 27.6	< 36.58

High purity GAGG crystal for PIKACHU

- Using high purity raw materials obtained by purification and selection, GAGG crystals of 2-inch size were grown at Tohoku University.
- The crystals were cut and polished, and the detector was fabricated by winding a reflective sheet and coupling it with a PMT and light guide.

Energy calibration

- Data acquisition with three gamma-ray sources
- Fit γ-ray peak (exp + gaus)

<u>α quenching factor in GAGG</u>

- Alpha rays emit less light per MeV (quenching) than beta rays.
- As the data are quenched, the energy dependence of the quenching coefficient was investigated for comparison with GEANT4 simulations.

PSD capability of high purity GAGG

• Pulse shape discrimination method (PSD) is Important for removing BGs.

 Data from BG measurements carried out in Tsukuba, were used to evaluate the PSD performance of high purity GAGG.

Completely distinguishable above 300 keV !!

Measurement in Kamioka 2023

- A BG survey of high-purity GAGG crystals was carried out in a low-BG environment 1000 m underground in Kamioka.
- BG comparison with previous studies. Feasibility study for sensitivity update.
 - Date: 2023 6/12~6/14 DAQ period : 18 hours
 - ✓ Shield : Pb 15cm &Cu 5cm thick
 - ✓ GAGG : 5.4 cmφ × 5.2 cmL (0.8 kg)
 - ✓ Waveform digitizer (4 ns/bin)
 - ✓ Threshold : ~150 keV

BG level compared with old crystal

- The radioactive BG levels inside the crystals were estimated from the α-ray rates.
- Assumed that alpha rays are not externally caused.

BG modelling with GEANT4

- Still remaining BGs should be quantitatively understood.
- So, an evaluation of BG in the data was attempted using GEANT4.
- Assuming radiative equilibrium below the long-lived nucleus, a U/Th-derived BG model was developed.

<u>Understanding α -ray BG by fitting</u>

• Fitting α spectrum with the simulated BG a spectrum.

→ Successful identification of impurity nuclides!

	²³⁸ U upper	²³⁸ U middle	²³⁵ U lower	²³² Th
Old GAGG	911±10	16.5 ± 3.5	73.5 ± 15.3	64.3 ± 3.0
HP GAGG	125±2	< 0.3	3.2 ± 0.7	2.2±0.2
Gd ₂ O ₃ mater.	< 16.3	< 043	-	1.7 ± 0.4

<u>β-ray BG in high purity GAGG</u>

Data: Only beta events were extracted from Kamioka data using PSD.

✓ Simulation: two β-ray BG models

U/Th decay series in crystal \Rightarrow Fixed impurity content from α -ray fitting results ⁴⁰K of PMT origins \Rightarrow Spectra generated by Geant4 and fitted

✓ The β-ray spectrum was successfully reproduced by Geant4!!
⇒ The dominant BG is upstream of ²³⁸U around the Q value (1.73 MeV)
✓ ⁴⁰K (1.46 MeV) is beginning to appear in the spectrum.
⇒ Consideration required if purification progresses

Sensitivity comparison with previous study

Assuming the same measurement time, **Sig**/√**BG** was compared with previous studies. <u>Sensitivity improve approximately 1.4 times that of</u> <u>the previous study is expected</u>

- Experiment will start next year with large, high-purity GAGG crystals!
- A further reduction of BG by more than one order of magnitude is needed to search for $2\nu\beta\beta$ of ¹⁶⁰Gd.
- \checkmark In parallel with the experiment, further purification will be explored.

Further purification of GAGG

- The crystal raw materials are of higher purity than the crystals, which suggests that U/Th impurities were introduced during the crystal growing process.
- The insulator made from ZrO₂ is contaminated by U/Th impurities.
- New crystals are currently being grown, while devising ways to prevent contamination from insulation.

Future prospect

- Suppose that one more order of magnitude of crystal purification is successfully achieved in the next crystal.
- Two large crystals will be grown and experiment will start in Kamioka in 2024.
- After about two years of measurements, a 4~5 times increase in sensitivity will be achieved.
- In parallel, further purification and an increase in the number of crystals are aimed at making the sensitivity 10 times higher than in the Ukrainian experiments.

I want to find a ¹⁶⁰Gd $2\nu\beta\beta$ in about 5 years!

- Double beta decay search (PIKACHU) experiment for ¹⁶⁰Gd.
- Aiming to increase sensitivity by one order of magnitude over previous studies, to discover $2\nu\beta\beta$.
 - ✓ Development of high-purity GAGG crystals!! BG~1/10 is achieved.
 - ✓ Sensitivity is equivalent to or higher than that of the previous study .

New collaborator is always welcome!!

→ tiida@hep.px.tsukuba.ac.jp