Improvement of reliability of nuclear matrix element of double-beta decay

J. Terasaki, Inst. of Exp. and Appl. Phys., Czech Technical Univ. in Prague

1. Phenomenological improvement of $0 v \beta \beta$ nuclear matrix element (NME) of the shell model and QRPA
J. T. and Y. Iwata, Eur. Phys. Jour. Plus, 136, 908 (2021)
2. The discrepancy problem of running sum of $2 v \beta \beta$ NME
J. T., Phys. Rev. C, 108, 014301 (2023)
3. Vertex correction to $0 v \beta \beta$ NME In progress
$0 v \beta \beta$: neutrinoless double- β; $2 v \beta \beta$: two-neutrino double- β
QRPA: quasiparticle random-phase approximation

1. Phenomenological improvement of $0 v \beta \beta$ nuclear matrix element (NME) of the shell model and QRPA

J. T. and Y. Iwata, Eur. Phys. J. Plus, 136, 908 (2021)

Modification of the shell model (SM) $0 \mathrm{v} \beta \beta$ GT NME

Corresponding to 1-major valence shell.

$$
M_{\mathrm{GT}}^{(0 \nu)}(\mathrm{SM}, \text { modified })=M_{\mathrm{GT}}^{(0 \nu)}(\text { SM, 1- maj. val. sh. }) \times \frac{S_{2}}{S_{1}}
$$

Justification

$$
M_{\mathrm{GT}}^{(0 v)}(\mathrm{SM}, \text { modified })=M_{\mathrm{GT}}^{(0 v)}(\mathrm{SM}, 1-\text { maj. val. sh. }) \times \frac{S_{2}}{S_{1}}
$$

Shell	Max. 1p-1h energy (Woods-Saxon) $(M e V)$	Max. $E_{\text {exc }}$ from GT str. fns. of SM (MeV)
$p f$	$8.8\left(1 f_{5 / 2}-1 f_{7 / 2}\right)$	7.7
spf	$14.4\left(1 f_{5 / 2}-1 d_{5 / 2}\right)$	

$$
\frac{\text { Run. sum } M_{G T}^{(0 v)}(\mathrm{QRPA}, 14.4 \mathrm{MeV})}{\operatorname{Run} . \operatorname{sum} M_{G T}^{(0 v)}(\mathrm{QRPA}, 8.8 \mathrm{MeV})}=1.31, \quad \frac{M_{G T}^{(0 v)}(\mathrm{SM}, s d p f)}{M_{G T}^{(0 v)}(\mathrm{SM}, p f)}=1.30
$$

Evaluation of possible region of modified QRPA result

Anticoherent lin Quenching factor to GT- str. ¡oherent limit $\left({ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Sc}\right)$

$\boldsymbol{M}_{\text {GT }}^{(\mathbf{0 v} \boldsymbol{v}}(\mathbf{Q R P A})$	$0.593(\mathrm{SM})$,
$0.5($ QRPA $)$,	

$M_{G T}^{(0 v)}($ QRPA $)$
Reduction in low- E rgn.
_ Enhancement in high- E rgn.
$+\begin{gathered}\text { Enhancement } \\ \text { in high- } E \text { rgn } .\end{gathered}$
$-\left(1-R_{q}\right) M_{G T}^{(0 v)}($ QRPA, low $E)$

Each has two comp. related to trsn. ME from initial and to final states

Modified $0 v \beta \beta$ NME of ${ }^{48} \mathrm{Ca}$

My speculation

The randomness limit is closer to the true value than the coherent and anticoherent limits.

Sign of correction terms unknown

No modification for QRPA

- Fermi transition
- Coordinate operators do not cause quenching

2. The discrepancy problem of running sum of $2 v \beta \beta$ NME

A. Gando et al., PRL 122, 192501 (2019)

Effective axial-vector current coupling
Running sum for $2 \mathrm{v} \beta \beta$ NME $\times\left(g_{A}^{\text {eff }}\right)^{2}$ of ${ }^{136} \mathrm{Xe} \rightarrow{ }^{136} \mathrm{Ba}$

Fitted to this (exp.) using

- $g_{A}^{\text {eff }}(\mathrm{SM})$
- isoscalar pn paring intn.
(QRPA)
Why was the $2 v \beta \beta$ used?
Because the main part of their paper is on a higher-order term of the $2 v \beta \beta$ NME, which was extracted from their exp. data. (My speculation).

Variety of results

My QRPA calculation of $M_{\mathrm{GT}}^{(2 v)}$
Skyrme + Coulomb + contact isovector and isoscalar pairing ($p p, n n$, and $p n$) interactions.

Menéndez Horoi Šimkovic Terasaki

Method	SM		QRPA	
Variation of comp. of $M^{(2 v)}$	Small	Large	Large	Small

The cause of the discrepancy problem is not the theoretical differences between SM and QRPA.

Changing interaction (my QRPA cal.)

Strength of the isoscalar pn pairing intn. $G_{p n}^{\text {IS }}$ is increased (previously $-55.0 \mathrm{MeV} \mathrm{fm}^{3}$).

Enhancing an interaction strength A local decrease in the running sum

Candidate of the cause of the discrepancy problem: difference in the interaction strengths

Explain this analytically. \Rightarrow confirming the cause.

$$
\begin{aligned}
& 2 v \beta \beta \text { NME } \\
& M^{(2 v)} \cong \sum_{B} \frac{m_{e} c^{2}}{E_{B}-\bar{M}}\left\langle\check{\text { Final state }} \begin{array}{l}
(Z+2, N-2)
\end{array} \quad \text { Initial state }(Z, N)\right. \\
& \text { Mean value of } I \text { and } F \text { masses GT operator }
\end{aligned}
$$

The analytical discussion using the separable approximation

- Matrix element of two-body interaction

$$
\frac{1}{2} \chi C_{\mu i} C_{v j}, \quad[\chi<0(\text { attractive })] \quad \begin{aligned}
& \text { Pairing correlations } \\
& \text { ignored }
\end{aligned}
$$

- Exchange terms neglected in derivation of the RPA eq.

Eq. to determine exc. state energy E_{B} :

$$
S\left(E_{B}\right) \equiv 2 \sum_{\mu i} \frac{\left|C_{\mu i}\right|^{2}\left(\epsilon_{\mu}-\epsilon_{i}\right)}{\left(\begin{array}{l}
\left.\epsilon_{\mu}-\epsilon_{i}\right)^{2}-E_{B}^{2} \\
\text { single-particle energies }
\end{array}\right.}=-\frac{1}{\chi}
$$

Suppose that $E=3$ is the unperturbed energy $\epsilon_{\mu}-\epsilon_{i}$ of GT-GR on $|I\rangle$
i) $\chi<0$ and ≈ 0
E_{B} closest to 3 is slightly lower than that.
ii) $\chi<0$ and $|\chi|$: large
$E_{B^{\prime}}$ higher than 3 is closest to 3 .

Creation operator of the intermediate states

$$
\begin{aligned}
& O_{B}^{\dagger}=\cdots+\frac{N_{B} C_{\mu 3 i 3}}{3-E_{B}} c_{\mu 3}^{\dagger} c_{i 3}+\frac{N_{B} C_{\mu 4 i 4}}{4-E_{B}} c_{\mu 4}^{\dagger} c_{i 4}+\cdots, \\
& O_{B^{\prime}}^{\dagger}=\cdots+\frac{N_{B^{\prime}} C_{\mu 3 i 3}}{3-E_{B^{\prime}}} c_{\mu 3}^{\dagger} c_{i 3}^{5}+\frac{N_{B^{\prime}} C_{\mu 4 i 4}^{4}}{4-E_{B^{\prime}}} c_{\mu 4}^{\dagger} c_{i 4}+\cdots,
\end{aligned}
$$

N_{B} : normalization

$$
\left\langle\mathrm{GT}^{-} \mathrm{GR}\right| \boldsymbol{\sigma} \tau^{-}|I\rangle=\langle I| O_{B} \boldsymbol{\sigma} \tau^{-}|I\rangle \text { or }\langle I| O_{B^{\prime}} \boldsymbol{\sigma} \tau^{-}|I\rangle
$$ const. of O_{B}^{\dagger}

The NME of GT-GR changes its sign with enhancement of χ

NME from intermediate to final state

$$
\left.\langle F| \boldsymbol{\sigma} \tau^{-}|B\rangle \cong\langle F| \boldsymbol{\sigma} \tau^{-} \mid \text {others }\right\rangle
$$

$=\langle F| \boldsymbol{\sigma} \tau^{-}\left(\cdots+\frac{N_{B F} C_{i 2 \mu 2}}{2-E_{B F}} c_{i 2}^{\dagger} c_{\mu 2}+\frac{N_{B F} C_{i 4 \mu 4}}{4-E_{B F}} c_{i 4}^{\dagger} c_{\mu 4}+\cdots\right)|F\rangle$.
The GT-GR comp. is missing.
$C_{i 2 \mu 2}, \cdots$ are smaller than that of the GT-GR comp.
The possibility of sign change of $\langle F| \boldsymbol{\sigma} \tau^{-}|B\rangle$ at the $\mathrm{GT}^{-} \mathrm{GR}$ energy is low.

The significant decrease in the running sum at the GT- ${ }^{-}$RR implies that the interaction is stronger than that of calculations with less decrease.

The cause of the problem is the difference in the interaction strength.

Exp. data and calculation of $g_{A}^{2} \times \mathrm{GT}^{-}$strength

${ }^{136} \mathrm{Xe}\left({ }^{3} \mathrm{He}, t\right){ }^{136} \mathrm{Cs}$ and e capture J. T., Phys. Rev. C, 100, 034325 (2019)
Exp. data from D. Frekers et al., Nucl. Phys. A 916, 219 (2013);
$J . T$. used $g_{A}^{\text {eff }}=0.49$. to reproduce exp. half-life of $2 v \beta \beta$ decay

3. Vertex correction to $0 \mathrm{v} \beta \beta$ NME

QRPA is good for ${ }^{136} \mathrm{Xe}$, but the $g_{A}^{\text {eff }}$ for the $2 v \beta \beta$ NME needs quenching. Many-body effects in the transition operator are indicated.

Effects not described by the lowest-order transition operator with the perturbed initial and final states - vertex correction.

I calculate the higher-order* terms of the effective transition operator to obtain $g_{A}^{\text {eff }}$.
*Higher order in terms of the interaction vertexes.
Calculation of the vertex correction and $g_{A}^{\text {eff }}$ is an important step toward the solution of the uncertainty problem of the $0 \mathrm{v} \beta \beta$ NME.

The $g_{A}^{\text {eff }}$ is useful for comparison of the $0 v \beta \beta$ and $2 v \beta \beta$ decays.

Goldstone diagrams for nucleons

Exchange ME

Two-body current ME
The NN interaction is vertically between the two neutrino vertexes.

Feynman diagram including vertex correction by meson exchange interaction (wavy line). Every part is a propagator.

Basic idea to derive equation of vertex correction to NME Extension of the nucleon part of the usual lowest-order equation of the $0 v \beta \beta$ NME according to the RayleighSchrödinger perturbation theory.

I pick up terms corresponding to those diagrams from the general equation of the second-order perturbation with approximations for feasibility of calculation.

Equation of the exchange ME

$$
\begin{aligned}
& \left.M_{\text {ex }}^{(0 v)}=\sum_{B_{F} B_{I}} \sum_{\kappa \nu^{\prime} \mu^{\prime} \lambda} \sum_{\mu \nu} W_{\mu^{\prime} \lambda, \mu \nu}^{(4 a)}\langle F| a_{\mu}^{F} a_{v}^{F}\left|B_{F}\right\rangle\left\langle B_{F} \mid B_{I}\right\rangle\left\langle B_{I}\right| a_{\kappa}^{I \dagger} a_{\nu^{\prime}}^{I \dagger}| |\right\rangle \nu_{\kappa \nu^{\prime}, \mu^{\prime} \lambda}^{(4 a) I} \\
& +\sum_{B_{F} B_{I}} \sum_{v^{\prime} \mu^{\prime} \lambda k} \sum_{\mu \nu} v_{\mu^{\prime} \lambda, k \nu^{\prime}}^{(4 b) F}\langle F| a_{k}^{F} a_{\nu^{\prime}}^{F}\left|B_{F}\right\rangle\left\langle B_{F} \mid B_{I}\right\rangle\left\langle B_{I}\right| a_{\mu}^{I f} a_{\nu}^{I t}|I\rangle \mathcal{W}_{\mu v, \mu^{\prime} \lambda}^{(4 a)} .
\end{aligned}
$$

$\mathcal{W}_{\mu^{\prime} \lambda, \mu \nu}^{(4 a)}:$ ME of the v potential. This is the usual one.
$\nu_{k \nu^{\prime}, \mu^{\prime} \lambda}^{(4 a)}$: ME of the perturbative interaction divided by an energy denominator.

Equation of the exchange ME

$$
\begin{aligned}
M_{\mathrm{ex}}^{(0 v)}= & \sum_{B_{F} B_{I}} \sum_{\kappa \nu^{\prime} \mu^{\prime} \lambda} \sum_{\mu \nu} \mathcal{W}_{\mu^{\prime} \lambda, \mu \nu}^{(4 a)}\langle F| a_{\mu}^{F} a_{\nu}^{F}\left|B_{F}\right\rangle\left\langle B_{F} \mid B_{I}\right\rangle\left\langle B_{I}\right| a_{\kappa}^{I \dagger} a_{\nu^{\prime}}^{I \dagger}|I\rangle \mathcal{V}_{\kappa v^{\prime}, \mu^{\prime} \lambda}^{(4 a) I} \\
& +\sum_{B_{F} B_{I}} \sum_{\nu^{\prime} \mu^{\prime} \lambda \kappa} \sum_{\mu \nu} \mathcal{v}_{\mu^{\prime} \lambda, v^{\prime}}^{(4 b) F}\langle F| a_{\kappa}^{F} a_{\nu^{\prime}}^{F}\left|B_{F}\right\rangle\left\langle B_{F} \mid B_{I}\right\rangle\left\langle B_{I}\right| a_{\mu}^{I \dagger} a_{\nu}^{I \dagger}|I\rangle \mathcal{W}_{\mu v, \mu^{\prime} \lambda}^{(4 a)} .
\end{aligned}
$$

Equation of the two-body current ME

$$
\begin{aligned}
M_{2 \mathrm{~b}}^{(0 \mathrm{v})}= & -\frac{1}{2} \sum_{B_{B_{I} B_{F}}} \sum_{\substack{\text { abcdefg} \\
\text { with conditions }}} W_{g f, c b}^{2 b}\langle F| c_{g}^{F \dagger} c_{f}^{F}\left|B_{F}\right\rangle V_{d e, a c}^{I}\left\langle B_{F}\right|: c_{d}^{I \dagger} c_{e}^{I \dagger} c_{c}^{I} c_{a}^{I}:\left|B_{I}\right\rangle \\
& \left\langle B_{I}\right| c_{c}^{I+} c_{b}^{I}|I\rangle .
\end{aligned}
$$

Suffixes $a-g$: single particles
$W_{g f, c b}^{2 b}$: ME of v potential including two energy denominators.
Coding is in progress.

4. Summary

1. Phenomenological improvement of $0 v \beta \beta$ NME of the SM and the QRPA
If more many-body correlations are added to the QRPA and single-particle space is enlarged in the SM, their $0 v \beta \beta$ NMEs approach to each other.
I look for shell model collaborators to apply this method to ${ }^{136} \mathrm{Xe}$.

2. The discrepancy problem of running sum of $2 v \beta \beta$ NME

The cause of the problem is the interaction strength.
3. Vertex correction to $0 v \beta \beta$ NME

The diagrams and equations of the vertex correction to the $0 v \beta \beta$ NME were shown.

