

Measurement of twoneutrino double-electron capture in the XENON experiments

NME 2023

Osaka, Japan | Dec 22 2023

Christian Wittweg on behalf of the **XENON** Collaboration

The XENON Collaboration

XENON

- ~170 scientists
- 27 institutions
- 12 countries

Direct dark matter detection

Detect weakly interacting massive particles (**WIMP**s) **directly** by measuring the **O(1) keV nuclear recoil** after scattering in a **large, low background, low threshold detector.**

XENON Dark Matter Project

XENON1T at LNGS

1500 m overburden (3600 m.w.e.)

84 8" PMTs as water Cherenkov muon **veto**

demi-water

LNGS hall B

Cryostat -

700 t

Dual-Phase Time Projection Chamber

Scintillation and ionization:

- Prompt light signal (**S1**)
- Secondary light in GXe from drifted charges (S2)
- Position reconstruction (**x**, **y**, **z**), calorimetry (**E**) \bullet and interaction type (**ER/NR**)

XENON Physics Programme

LIGHT DARK MATTER

PRL 123, 241803 PRL 123, 251801

SOLAR ⁸B CEvNS

PRL 126, 091301

DOUBLE ELECTRON CAPTURE

Nature 568, 532 Phys. Rev. C 106, 024328

> NEUTRINOLESS DOUBLE-β DECAY

EPJ C (2020) 80:785 (analysis R&D)

WIMP DARK MATTER

PRL 119, 181301 PRL 121, 111302 PRL 122, 071301 PRL 122, 141301 PRL 126, 091301 PRD 103, 063028

BOSONIC DARK MATTER

PRD 102, 072004

SOLAR AXIONS

PRD 102, 072004

NEUTRINO MAGNETIC MOMENT

PRD 102, 072004

TECHNICAL ANALYSIS PAPERS

PRD 99, 112009 PRD 100, 052014

Two-Neutrino Double-Electron Capture

KK-capture: 64.3 keV (72.4 %) KL-, KM-, KN-capture: 32.4 – 37.3 keV (25.3 %) **LL**-capture: 8.8 – 10.0 keV (1.4 %) Other: < 10 keV (0.8 %)

Relative capture ratios calculated from overlap of K to N5 electron and nuclear wave functions.

 124 Xe/^{nat}Xe = (9.94 ± 0.14_{stat} ± 0.15_{svs}) · 10⁻⁴ $\frac{\text{mol}}{1}$ mol

First XENON1T Result

- Observed KK-capture at **4.4σ** significance.
- LL-capture too low in rate and outside ROI.
- KL-, KM- and KN-capture obscured by ^{83m}Kr

Analysis Upgrades

- Improved cuts for ^{83m}Kr events allow inclusion of KL-, KM-, KN-peaks.
- Updated data processor and energy reconstruction.
- Increase exposure to 0.93 tonne x years \bullet using four datasets
 - **SR1a**: 171.2 d
 - 1.0 t inner cylinder
 - 0.5 t outer fiducial volume
 - SR1b: 55.8 d in 1 t cylinder
 - SR2: 24.3 d in 1 t cylinder

Separation in time due to timedependent ¹²⁵I background!

 μ_{E} \sqrt{L} Le decays to 125 I via electron capture with a half-life of 16.9 h: an Bry reaction of the second of the second by 124 (125 the second of th ovaleneternesohetionons eah beat aptilize GEC exergy diktinge 25 Data Fig. 2). $^{125}\text{I}^* \xrightarrow{<1 \text{ ns}} {}^{125}\text{I} + \gamma + X.$ Neutron odenayEttermal viewebest can xeptupen with 5 x balk bife of ulting 125 Xe: X-rays and Auger electrons from the atomic relaxation after the electron capture are 2^{125} in SR1a The sto 125 Xe decay capture with a half-life of 4.6.9 h: X. Iodine also undergoes electron capture to 125 Te with a 59.4 d half-life: $\sqrt{125} I \text{ via electron cap} \underbrace{\operatorname{cap}}_{125} I \text{ via electron cap}_{125} I \text{ via electron c$ K-rays and Auger electrons from from the atomies relaxation after the electron capture and denoted $\xrightarrow{125}q \xrightarrow{59.4} \stackrel{d}{\longrightarrow} \xrightarrow{123} \stackrel{\gamma}{123} \xrightarrow{\gamma} \stackrel{*}{\longrightarrow} \xrightarrow{1.48} \stackrel{hs}{\text{hs}} \xrightarrow{\gamma} \xrightarrow{125} \stackrel{\gamma}{\text{Te}} + \gamma + X.$ ¹²⁵I decay Indine also undergoes electron to the set of the set o and Auger electrons from the atomics relaxation after the electron capture are denoted h decays populate short-lived excited nuclear states of 125 I and 125 Te and the signals from the e also undergoes electron capture to $1257^{59.4 \text{ d}}$ 1257^{257} e with a 59.4 d half-life. and Auger electrons from the promic relaxation after the electron capture are denoted ansitions are merged with the atomic relaxation signals following the electron capture. The Te e also undergoes electron capture to $\stackrel{125}{\Gammae} + \nu_e$, $\stackrel{1.48 \text{ ns}}{20} \stackrel{40.4 \text{ keV, 36.5 keV}}{129} \stackrel{1.48 \text{ ns}}{\Gammae} + \nu_e$, $\stackrel{1.48 \text{ ns}}{20} \stackrel{1.48 \text{ ns}}{20} \stackrel{1.48 \text{ ns}}{129} \stackrel{1.48 \text{ n$ EC

(3)

 $\mu_{\rm E} = \sqrt{E}$ Le decays to 125 I via electron capture with a half-life of 16.9 h: an Backer of U_{μ} and V_{E} and $V_{$ $\xrightarrow{125} Xe \xrightarrow{16.9 h} \xrightarrow{125} T^*$ ovalen Etzy mesohetion af eah beat aptilize EEE exergy deixtingle 25 Data Fig. 2). $^{125}\text{I}^* \xrightarrow{<1 \text{ ns}} {}^{125}\text{I} + \gamma + \text{X}.$ Neutron dealayElformal reactorst can xeptupen with 5 X balk hip of uting h?5 Xe: X-rays and Auger electrons from the atomic relaxation after the electron capture are detected in error of the purification! rs to ¹²⁵I via electron capture with a half-life of 46.9 h: Letter a half-life of 46.9 h: Letter also undergoes electron capture to ¹²⁵Te with a 59.4 d half-life: ys to ¹²⁵I via electron cap<u>ture with</u> a half-life of 16.9 h: 125I via electron cap<u>ture with</u> to half-life of 16.9 h: 125Te⁺⁺ $\gamma\gamma$ ++XX. EC X-rays and Auger electrons from the atomie relaxation after the electron capture are denoted as denoted at the second sector of the area of the sector of t ¹²⁵I decay Indine also undergoes electron capture to $^{125}_{251}$ Te with a 59.4 d half-life: and Auger electrons from the atomics relaxiation after the electron capture are denoted h decays populate short-lived excited nuclear states of 125 I and 125 Te and the signals from the also undergoes electron capture to ¹²⁵ with a 59.4 d half-life: and Auger electrons from the promic relaxation after the electrons capture are electron electron the promic relaxation signals following the electron ele e also undergoes electron capture to 125 Te with a 59.4 lenalfylife. 'L'e ν_{e} , 20 EC

(3)

Combined Signal + Background Fit

Comparing to Nuclear Models

- Observed 2vECEC at 7.0 significance with
- a best-fit rate of (300 ± 50) events/t/yr.
- Longest half-life measured directly to date.
 - $T_{1/2}^{2\nu \text{ECEC}} = (1.1 \pm 0.2_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ yr}$ Exposure (0.3 %) Abundance (1.8%) Signal acceptance (4.5 %) Relative capture fractions (6.3 %)
- Compatible with theoretical models.
- Approximately 2σ below XMASS lower limit.

Upgrading to XENONnT

New ER and NR calibration systems

Larger TPC with 3x active volume

Gd-loaded water Cherenkov neutron veto

XENONnT Radon Distillation Column

Radon-free compressor

as heat pump

LN2/Xe heat exchanger

Xenon

Radon

Reboiler and Xe/Xe heat exchanger

- Main background for low-energy ER searches from ²²²Rn progeny
- Constantly remove emanating radon from xenon using difference in vapor pressure
- Remove radon faster than it decays $(T_{1/2} = 3.8 \text{ d})$
- Liquid xenon inlet and outlet with
 0.4 l/min ≈ 70 kg/h LXe

XENONnT Radon Distillation Column

- Reached equilibrium concentration of
 1.72 µBq/kg by gas extraction only
- Additional factor 2 in Rn removal achieved for second science run using originally planned liquid extraction
- Achieved background goal 1 $\mu Bq/kg$

XENONnT low-energy ER results

Phys. Rev. Lett. 129, 161805 (2022)

- First XENONnT 2vECEC measurement as a spin-off from a search for new physics with low-energy electronic recoils.
- 97.1 live days of data in a (4.37 ± 0.14) tonne fiducial volume => 1.16 tonneyears
- Lowest ever background in a Xe TPC for dark matter searches.

 $T_{1/2}^{2\nu \text{ECEC}} = (1.18 \pm 0.13_{\text{stat}} \pm 0.14_{\text{sys}}) \cdot 10^{22} \text{ yr}$

Neutrinoless double-electron capture

2856.73(12) keV

Q = 2856.7 keV E_{KK} = 64.5 keV Q-E_{KK} = 2792.3 keV

Eur. Phys. J. C 80 (2020) 12, 1161

- Resonant decay needed in order to conserve energy and momentum.
- 124 Te state at 2790.41 keV is 1.9 keV off and J^{P} unknown.

BSM physics, e.g. light neutrino exchange

$$(T_{1/2}^{0\nu\text{ECEC}})^{-1} = \frac{G_{0\nu} |M_{0\nu}|^2}{|f(m_{\rm i}, U_{\rm ei})|^2} R$$

PSF and NME Resonance factor

$$R = \frac{m_{\rm e}c^2\Gamma}{\Delta^2 + \Gamma^2/4} = 2.92 \pm 0.47$$

 $T_{1/2}^{0\nu} > 1.8 \cdot 10^{29} \text{ yr} - 3.9 \cdot 10^{32} \text{ yr} \quad (90\% \text{ C}.\text{L}.)$

2vECEC 2vβ+β+ 2vECβ+ 0vECβ+ 0vβ+β+

¹²⁴Xe

Undetected ¹²⁴Xe decays

With $Q_{2vECEC} = 2856.7$ keV two positronic decay modes for ¹²⁴Xe:

 $T_{1/2}^{2\nu} = (1.7 \pm 0.6) \cdot 10^{23} \text{ yr}$ $T_{1/2}^{0\nu} > 4.8 \cdot 10^{25} \text{ yr} - 5.3 \cdot 10^{28} \text{ yr} \quad (90\% \text{ C.L.})$

 $T_{1/2}^{2\nu} = (2.2 \pm 0.7) \cdot 10^{28} \text{ yr}$ $T_{1/2}^{0\nu} > 8.6 \cdot 10^{26} \text{ yr} - 9.3 \cdot 10^{29} \text{ yr} \quad (90\% \text{ C.L.})$

What if it is not light neutrino exchange?

 $[T_{1/2}^{\alpha}(0_i^+ \to 0_f^+)]^{-1} =$ $C^{\alpha}_{mm} \left(\frac{\langle m_{\nu} \rangle}{m_{e}}\right)^{2} + C^{\alpha}_{\eta\eta} \langle \eta \rangle^{2} + C^{\alpha}_{\lambda\lambda} \langle \lambda \rangle^{2} +$ $C^{\alpha}_{m\eta} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \eta \rangle + C^{\alpha}_{m\lambda} \frac{\langle m_{\nu} \rangle}{m_{e}} \langle \lambda \rangle + C^{\alpha}_{\eta\lambda} \langle \eta \rangle \langle \lambda \rangle$

Couplings and mixing

M. Hirsch et al.: Zeitschrift für Physik A Hadrons and Nuclei 347, 151 (1994)

Observation of $0\nu\beta^{-}\beta^{-}$ in ^{76}Ge (full) and ¹³⁶Xe (dashed) with $T_{1/2} = (1.5 \pm 0.5) \times 10^{24} \text{ yr}$

Observation of $0\nu\beta$ - β - in ⁷⁶Ge and $0\nu EC\beta^+$ of ¹²⁴Xe with $T_{1/2} = (1.5 \pm 0.5) \times 10^{25} \text{ yr}$

Observation of $0\nu\beta$ - β - in ⁷⁶Ge and $0\nu EC\beta^+$ of ¹²⁴Xe with $T_{1/2} = (1.5 \pm 0.5) \times 10^{26} \text{ yr}$

The Future: DARWIN + XLZD

- Make ¹²⁴Xe 2vECEC, ¹³⁶Xe 2vββ and solar \bullet neutrinos dominant backgrounds
- Multi-purpose physics observatory: \bullet
 - Dark matter, 0vββ, axions, neutrinos, ...

Summary

- XENON1T measured 2vECEC directly for the first time in 2018
- First significant measurement of 2vECEC in ¹²⁴Xe with a half-life of

$(1.1 \pm 0.2_{stat} \pm 0.1_{sys}) \times 10^{22} \text{ yr}$ at 7.0 σ .

- XENONnT will improve the measurement precision further for a better benchmark of nuclear models.
- Neutrinoless and positronic decay modes of ¹²⁴Xe provide intriguing event signatures.

University of Zurich^{UZH}

