The international workshop on "The theoretical and experimental approaches for nuclear matrix elements of double-beta decay" December 21 – 22 2023, Osaka

Uncertainties of nuclear matrix elements

of 0vββ decay based on Skyrme QRPA

Yifei Niu

MOE Frontiers Science Center for Rare Isotopes

School of Nuclear Science and Technology

Lanzhou University

- Introduction
- Theoretical Framework
- Uncertainties from pairing interactions
- Summary and Perspective

Neutrinoless double beta decay

J. M. Yao, J. Meng, Y. F. Niu, and P. Ring, Prog. Phys. Nucl. Phys. 126, 103965 (2022)

Uncertainties of NMEs

To understand the discrepancies, great efforts have been made to analyze the uncertainties of NMEs

Uncertainty sources

- ✓ The axial-vector coupling constant g_A : g_A =1 or 1.25
- ✓ The two-nucleon short-range correlations (s.r.c.) : UCOM / Jastrow
- The higher order terms of the nucleon current : weak- magnetism and pseudoscalar couplings
- ✓ The finite size of the nucleon: nucleon form factors
- The size of the model space: 2/3/4 oscillator shells (QRPA)
- \checkmark The closure approximation

•••

These uncertainties were studied within

✓ Quasiparticle Random Phase Approximation (QRPA)

F. Šimkovic et al. Phys. Rev. C 60, 055502 (1999) V. A. Rodin et al. Nucl. Phys. A 766, 107 (2006)

F. Šimkovic et al. Phys. Rev. C 77, 045503 (2008)

✓ Interacting Shell Model (ISM)

E. Caurier et al. Phys. Rev. Lett. 052503, 100 (2008) J. Menéndez et al. Nucl. Phys. A 818, 139 (2009)

Uncertainties of NMEs

- To understand the discrepancies, great efforts have been made to analyze the uncertainties of NMEs
 - The NMEs of QRPA and ISM with error bar evaluated from those uncertainties

data from J. Menéndez et al. Nucl. Phys. A 818, 139 (2009) for shell model F. Šimkovic et al. Phys. Rev. C 77, 045503 (2008) for QRPA

- Uncertainty sources: nuclear interactions --- particle-hole channel
 - ➤ G-matrix QRPA:

Mean field: Coulomb corrected Woods-Saxon potential

Residual interaction: Bonn, Argonne, Nijmegen renormalized by Brückner G matrix

Averaged over three potentials and three choices of the s.p. space

- ✓ The strength of the particle-particle interaction is adjusted so that the $2\nu\beta\beta$ decay rate is correctly reproduced
- ✓ $M^{0\nu}$ values are essentially independent of the form of different realistic *NN* potentials.

V. A. Rodin, F. Šimkovic , et al. Phys. Rev. C 68, 044302 (2003)

- Uncertainty sources: nuclear interactions --- particle-hole channel
 - Self-consistent QRPA:

Mean field, residual interaction: same interaction from energy density functionals

✓ Particle-hole (ph) channel

Hundreds of Skyrme interactions:

- Nucleon effective mass m^* : single-particle level density near Fermi level
- Landau parameter g'_0 : the strength of spin-isospin part of nuclear interactions

Y. F. Niu et al. Phys. Rev. C 85, 034313 (2012)

- Uncertainty sources: nuclear interactions --- particle-hole channel
 - Self-consistent QRPA:

Mean field, residual interaction: same interaction from energy density functionals

✓ Particle-hole (ph) channel

Hundreds of Skyrme interactions:

- Nucleon effective mass m^* : single-particle level density near Fermi level
- Landau parameter g'_0 : the strength of spin-isospin part of nuclear interactions

- Uncertainty sources: nuclear interactions --- particle-hole channel
 - Self-consistent QRPA:

Mean field, residual interaction: same interaction from energy density functionals

✓ Particle-hole (ph) channel

Hundreds of Skyrme interactions:

- Nucleon effective mass m^* : single-particle level density near Fermi level
- Landau parameter g'_0 : the strength of spin-isospin part of nuclear interactions

Uncertainty sources: nuclear interactions --- particle-particle channel

✓ Correlation between pairing energy and

T. R. Rodríguez et al. Phys. Lett. B 719, 174 (2013); Phys. Rev. Lett. 105, 252503 (2010)

Uncertainty sources: nuclear interactions --- particle-particle channel

T. R. Rodríguez et al. Phys. Lett. B 719, 174 (2013); Phys. Rev. Lett. 105, 252503 (2010)

Motivation

- □ In order to study the uncertainties caused by particle-hole channel and particle-particle channel of nuclear effective interaction, we need self-consistent QRPA models with large variety of different interactions
 - Self-consistent QRPA for $M^{0\nu}$ and $M^{2\nu}$
 - ✓ Spherical Skyrme QRPA J. Terasaki, Phys. Rev. C 86, 021301(R) (2012); Phys. Rev. C 102, 044303 (2020)
 - Axially deformed Skyrme QRPA (matrix diagonalization / finite amplitude method)
 M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013)
 N. Hinohara and J. Engel, Phys. Rev. C 105, 044314 (2022)
 - ✓ Spherical relativistic QRPA N. Popara, A. Ravlić, and N. Paar, Phys. Rev. C 105, 064315 (2022)

Uncertainties from nuclear effective interactions are not discussed so far

\succ In this work:

With self-consistent Skyrme QRPA, we study the NMEs for ⁷⁶Ge, ⁸²Se, ¹²⁸Te, ¹³⁰Te, and ¹³⁶Xe. The uncertainties from nuclear effective interaction will be emphasized.

ph channel: 18 Skyrme interactions
 pp channel: 2 kinds of pairing forces

Introduction

Theoretical Framework

- Uncertainties from pairing interactions
- Summary and Perspective

NME calculated by QRPA

QRPA: widely used for the description of spin-isospin excitations

The QRPA excited state is generated by

$$Q_{\nu}^{\dagger} = \sum_{mi} X_{mi}^{\nu} \alpha_m^{\dagger} \alpha_i^{\dagger} - Y_{mi}^{\nu} \alpha_i \alpha_m$$

 ✓ Full 2 quasiparticle configuration space ⇒ almost whole nuclear chart

NME
$$M^{0\nu} \equiv -M_{\rm F}^{0\nu} + M_{\rm GT}^{0\nu} + M_{\rm T}^{0\nu}$$

 $M^{0\nu} = \frac{8R_0}{g_A^2(0)} \sum_{N_F N_I} \sum_{pnp'n'} \langle N_F | c_n^{\dagger} c_p | 0_F^{\dagger} \rangle \langle N_F | N_I \rangle \langle N_I | c_{p'}^{\dagger} c_{n'} | 0_I^{\dagger} \rangle \langle K_{pnp'n'}^F + K_{pnp'n'}^{GT} \rangle, \quad \text{overlap factor}$ $K^{\alpha}_{pnp'n'} = \int dqq \sum_{LM} \frac{h_{\alpha}(q^2)}{q + E_N - (E_I + E_F)/2} \langle n | \mathcal{O}_{\alpha}^{-} | p \rangle^* \langle p' | \mathcal{O}_{\alpha}^{+} | n' \rangle$ $\mathcal{O}_F^{\pm} = j_L(qr) Y_{LM}(\hat{\mathbf{r}}) \tau^{\pm}, \quad \text{induced current}$ $h_F(\mathbf{q}^2) = -\mathbf{g}_V^2 \quad h_{CT}(\mathbf{q}^2) = \mathbf{g}_A^2 - \sum_{qAg_P} \frac{\mathbf{q}^2}{3m_p} + \mathbf{g}_P^2 \frac{\mathbf{q}^4}{12m_p^2} + \mathbf{g}_M^2 \frac{\mathbf{q}^2}{6m_p^2}$

Nuclear effective interaction

> ph channel: Skyrme interaction

$$V^{ph}(\boldsymbol{r}_1, \boldsymbol{r}_2) = t_0(1 + x_0 P_{\sigma})\delta(\boldsymbol{r}) + \frac{1}{2}t_1(1 + x_1 P_{\sigma})\left[\boldsymbol{P}^{\prime 2}\delta(\boldsymbol{r}) + \delta(\boldsymbol{r})\boldsymbol{P}^2\right]$$
$$+ t_2(1 + x_2 P_{\sigma})\boldsymbol{P}^{\prime} \cdot \delta(\boldsymbol{r})\boldsymbol{P} + \frac{1}{6}t_3(1 + x_3 P_{\sigma})\rho^{\alpha}(\boldsymbol{R})\delta(\boldsymbol{r})$$
$$+ iW_0(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \left[\boldsymbol{P}^{\prime} \times \delta(\boldsymbol{r})\boldsymbol{P}\right]$$

 \succ pp channel: δ interaction

$$V^{pp}(\mathbf{r}_1, \mathbf{r}_2) = \left[t'_0 + \frac{t'_3}{6}\rho(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2})\right]\delta(\mathbf{r}_1 - \mathbf{r}_2)$$

i) Volume pairing (the pairing field follows the shape of the density), $t'_3 = 0$.

ii) Surface pairing (the pairing field is peaked at the surface and follows roughly the variations of the density), $t'_3 = -37.5t'_0$.

The pairing strengths are determined by fitting the experimental pairing gap.

- Introduction
- Theoretical Framework
- Uncertainties from pairing interactions
- Summary and Perspective

$M^{0\nu}$ by different ph and pp interactions

✓ For the same kind of pp interaction, $M^{0\nu}$ obtained by different ph interaction are close.

✓ Except for ¹³⁶Xe, $M^{0\nu}$ calculated by surface pairing are larger.

Isoscalar pairing dependence of $M^{0\nu}$

✓ By adjusting f_{IS} to reproduce the experimental $M_{GT}^{2\nu}$, $M^{0\nu}(1^+)$ by different pp interactions are close.

- ✓ The difference of $M^{0\nu}$ between volume pairing and surface pairing mainly comes from contributions of other multipoles rather than 1⁺.
- ✓ Contributions from other multipoles are almost independent of f_{IS} .

The difference in $M^{0\nu}$ from the different form of pairing interaction should be caused by the isovector pairing part.

Isovector pairing effects

□ Isovector pairing plays its role on NME through the following factors

- ✓ the overlap of HFB wavefunctions $\langle HFB_f | HFB_i \rangle$.
- ✓ one-body transition densities
- ✓ the number of two quasiparticle (2qp) proton-neutron configurations

✓ The distribution of occupation probability is more diffuse for the surface pairing than the volume pairing.

Larger configuration space

Isovector pairing effects

□ Isovector pairing plays its role on NME through the following factors

- ✓ the overlap of HFB wavefunctions $\langle HFB_f | HFB_i \rangle$.
- ✓ one-body transition densities
- ✓ the number of two quasiparticle (2qp) proton-neutron configurations

⁷⁶Ge, ⁸²Se, ^{128,130}Te: $\langle HFB_f | HFB_i \rangle \simeq 0.82$ for volume and surface pairing ¹³⁶Xe: $\langle HFB_f | HFB_i \rangle = 0.45$ for volume pairing $\langle HFB_f | HFB_i \rangle = 0.25$ for surface pairing

0.11

0.66

0.15

 σ of $M^{0\nu}$

0.45

• Although the effective mass m^* and Landau parameter g'_0 span a wide range, for each kind of pp interaction, σ is only around 10% of $\overline{M}^{0\nu}$.

• For $M^{0\nu}({}^{76}\text{Ge})$

- ✓ spherical *G*-QRPA, relativistic and nonrelativistic GCM, and IBM2 results lie within 1.0~2.0 σ from our $\overline{M}^{0\nu}$ by volume pairing.
- ✓ deformed G-QRPA, ISM, triaxial projected SM, and ab initio approaches are much smaller, since they consider more manybody correlations.

1.72

0.11

8.40

0.66

1.35

0.15

5.65

0.45

 σ of $M^{0\nu}$

Although the effective mass m^* and Landau parameter g'_0 span a wide range, for each kind of pp interaction, σ is only around 10% of $\overline{M}^{0\nu}$.

For $M^{0\nu}$ (¹³⁶Xe), either by volume pairing or surface pairing, our results are smaller than many other models, which could be caused by the sharp neutron Fermi surface in ¹³⁶Xe that suppresses the NMEs through $\langle HFB_f | HFB_i \rangle$.

W. L. Lv, Y. F. Niu, D. L. Fang, J. M. Yao, C. L. Bai, and J. Meng, Phys. Rev. C 108, L051304 (2023).

Correlation between $M^{\rm DGT}$ and $M^{0\nu}$

N. Shimizu et al. Phys. Rev. Lett. 120, 142502 (2018)

✓ M^{DGT} is strongly affected by the choice of ph interactions. There seems no correlation between M^{DGT} and $M^{0\nu}$ in QRPA model.

Correlation between $M^{\rm DGT}$ and $M^{0\nu}$

- ✓ M^{DGT} : both short range and long range physics matter.
- ✓ $M^{0\nu}$: only short range physics matters.

- Introduction
- Theoretical Framework
- Uncertainties from pairing interactions
- Summary and Perspective

Summary and Perspectives

Summary

- Uncertainties raising from nuclear effective interactions within Skyrme QRPA model are investigated
 - ✓ NME are not sensitive to ph interactions
 - ✓ NME are very sensitive to pp interactions: surface pairing with more diffused Fermi surface gives larger NMEs.

Perspective

- Which pairing is more suitable for NME calculation?
 - Besides the mean pairing gaps, other constraints on the pairing interactions need to be considered.
- Effects of beyond QRPA model (QPVC) on NME

Acknowledgment

Collaborators

Lv Wanli Bai Chunlin Fang Dongliang Meng Jie Yao Jiangming Lanzhou University Sichuan University Insitute of Modern Physics Peking University Sun Yat-sen University

Thank you!