Innovating Solutions

Exploring Delayed Gamma-Ray following Ordinary Muon Capture: Insights into Double Beta Decays and Antineutrino Nuclear Responses

IZYAN HAZWANI HASHIM

NME2025 RCNP WORKSHOP FOR THEORETICAL AND EXPERIMENTAL APPROACHES FOR NUCLEAR MATRIX ELEMENTSOF DOUBLE BETA DECAYS

<page-header><page-header><page-header><page-header><page-header><page-header><page-header>

lsotope	Facility/ Momentum	Muon intensity	Method	References
¹⁰⁰ Mo	JPARC (30 MeV/c)	1.8×10 ⁶ /s	Measure delayed	[1]
^{Nat} Mo, ¹⁰⁰ Mo	MuSIC (45-55 MeV/c)	2.5 ×10⁰/s	 gamma rays to deduce - Br(X') 	[2]
¹²⁷ I, ¹⁹⁷ Au, ²⁰⁹ Bi	TRIUMF (90 MeV/c)	2.0 ×10⁵⁄s	Measure gamma ray	[3]
²⁷ Al, ²⁸ Si, ^{Nat} Ca, ⁵⁶ Fe, ⁶¹ Ni, ¹²⁷ I, ¹⁹⁷ Au, ²⁰⁹ Bi	TRIUMF (90 MeV/c)	-	from bound states (short lived) and	[4]
⁴⁸ Ti, ⁷⁶ Se, ⁸² Kr, ¹¹⁶ Cd and ¹⁵⁰ Sm	PSI (28 MeV/c)	3.0 ×10³/s and 2.5 ×10⁴/s	deduce Br(X')	[5,6]

[3]Measday, D. F., Stocki, T. J. and Tam, H. Physical Review C, 2007. 75(4): 045501. [4]Measday, D. F. and Stocki, T. J. AIP Conference Proceedings. American Institute of Physics. 2007, vol. 884. 169–175

[5]Zinatulina, D., Brudanin, V., Briançon et al. AIP Conference Proceedings. American Institute of Physics. 2013, vol. 1572. 122–125. [6]Zinatulina, D., Brudanin, V., Egorov, V., Physical Review C, 2019. 99(2): 024327.

7

OUTM

Techniqu	es for det	ecting de	layed gan	nma rays	
А	14≤A≤28 [1]	40≤A≤58 [1]	76≤A≤100 [2,3]	127≤A≤150 [1,2,4]	 Light nuclei can emit up to 3 neutrons with total
(µ,0n)	9 - 26%	27 - 32%	10-15%	8 -12%	probability of 85%.
(µ,1n)	45 - 49%	42 - 60%	45 - 60%	40 - 50%	Medium-heavy nuclei can
(µ,2n)	6 - 27%	3 - 9%	15 - 20%	15 - 20%	emit more than 4 neutrons with total probability of 96%
(µ,3n)	1 - 4%	~1%	5 - 9%	12 - 15%	 Light nuclei have higher
(µ,4n)	~0	~0	2 - 4%	5 - 10%	proton and alpha emission
(μ, xn) x>4	~0	~0	<3%	<2%	(~10-15%) than medium- heavy nuclei (<5%).
(µ,p)	~2%	5-10%	<1%	<1%	[8]Measday, D. F. and Stocki, T. J. AIP
(µ,pxn) x>0	5 - 9%	5-11%	~0	<1%	Conference Proceedings. American Institute of Physics. 2007, vol. 947. 253–257. [9]Zinatulina, D., et al, I Physical Review C,
(µ,an)	~0	~0	<1%	~0	[10] Hashim, I., Ejiri, H., Othman, et al
(µ,axn) x>0	~3%	0-3%	~0	~0	NIMA, 2020:163749. [11] Measday, D. F., Stocki, T. J. et al Physical Review C, 2007. 75(4): 045501.
			15		

8

Significance of delayed gamma-ray spectroscopy for DBD studies.

Table 6

RIs produced by OMC on ^{Nat}Mo. Columns 1 and 2 show the RI produced by μ capture and the residual nucleus, and column 3 gives the emission process involved. Column 4 gives the half-life of the RIs produced by OMC. Column 5 is the number of the RIs, column 6 lists the typical γ ray(s) [7], and column 7 is the calculated N(X') by the PNEM.

RI	Final N	Process	Half-life (h)	N(X')×10 ⁸	γ rays (keV)	calc. N(X')×10 ⁸
¹⁰⁰ Nb	¹⁰⁰ Mo	¹⁰⁰ Mo(µ,0n)	4.4×10^{-3}	0.6 ± 0.1	535.6ª	0.35 ± 0.26
⁹⁹ Mo	^{99m} Tc	$^{100}Mo(\mu, n\beta^{-})$	66	3.8 ± 0.4	140.5, 181.0, 739.5	2.91 ± 1.02
⁹⁸ Nb	⁹⁸ Mo	¹⁰⁰ Mo(µ,2n)	$7.1 \times 10^{-3}, 0.855$	3.0 ± 0.8	734.7 ^a , 787.4	2.08 ± 1.01
⁹⁷ Nb	⁹⁷ Mo	⁹⁸ Mo(µ,1n)	1.2	8.8 ± 1.5	658.1	8.51 ± 0.83
⁹⁷ Zr	⁹⁷ Nb	⁹⁸ Mo(µ,p)	16.9	0.05 ± 0.02	743.5	-
⁹⁶ Nb	⁹⁶ Mo	⁹⁷ Mo (µ,1n)	23.4	4.5 ± 1.0	568.8, 778.2, 1091.3	7.02 ± 1.37
⁹⁵ Nb	⁹⁵ Mo	⁹⁶ Mo(µ,1n)	1205	6.7 ± 1.0	765.8	7.52 ± 2.16
⁹⁴ Nb	⁹⁴ Mo	⁹⁸ Mo(µ,1n)	$1.75 imes10^8$	8.62 ± 1.0^{b}	-	8.29 ± 1.13
⁹³ Nb	⁹³ Nb	⁹⁴ Mo(µ,1n)	1.41×10^5	5.26 ± 1.0^{b}	-	5.06 ± 1.35
⁹² Nb	⁹² Zr	⁹⁴ Mo (µ,2n)	244.8	3.0 ± 0.15	934.5	2.78 ± 1.17
⁹¹ Nb	⁹¹ Zr	⁹² Mo (µ,1n)	6×10^{6}	5.19 ± 1.0^{b}	-	5.00 ± 1.17
⁹⁰ Nb	⁹⁰ Zr	⁹² Mo (µ,2n)	14.6	1.9 ± 0.3	1129.2, 2186, 2319.0	-

JUTM

 $^a The \ \gamma$ rays measured in the $^{100} Mo$ experiment. $^b N(X')$ obtained by calculation using PNEM.

- In different cases, neutron are measured on time of flight (TOF) measurement[3].
- The main problem is how to relate delayed γ -ray to the neutrino nuclear responses
 - Using proton neutron emission model (PNEM) to obtain the β⁺ virtual transition distribution

Isotope	Method	E _{G1} (MeV)	E _{G2} (MeV)	Reference
¹⁰⁰ Mo	Exp + NEM	12	30	[1]
²³ Na, ²⁴ Mg, ²⁷ Al, ²⁸ Si, ⁴⁰ Ca, and ⁵⁶ Ni	Exp + NEM	12-18	30-46	[2]
⁷⁶ Se, ¹⁰⁶ Cd, ¹²⁷ I, ¹⁵⁰ Sm, ¹⁹⁷ Au and ²⁰⁹ Bi	Exp + NEM	9.9-12.2	25.7-31.5	[3]
¹⁰⁰ Mo	Exp + NEM + pn-QRPA	10.5	29.5	[4]
¹⁰⁰ Mo, ¹⁰⁷ Pd, ¹⁰⁸ Pd, ¹²⁷ I and ²⁰⁹ Bi.	Exp + PNEM	10-18	25-45	[5]
1] Hashim, I.et al,. Physical Review C, 2018 2] Muslim, N.F.H. BSc Thesis, UTM. 2018 3] Ibrahim. F. BSc Thesis, UTM. 2018		F. Oth	man, UTM PhD Th	esis 2023

Significance of delayed gamma-ray spectroscopy for DBD studies.

- Total OMC rate for nuclei
- Involvement of overall individual spin states for intermediate nuclei
- Theoretical pn-QRPA simulate the same distribution by g_A and g_p combination => Absolute capture strength.
- The first comparison of experimental data of ¹⁰⁰Mo with pn-QRPA:
 - More than 90% of the contribution is from 0[±], 1[±] and 2^{±.}
 - Remaining coming from higher multipole states.
- The present calculation was using Neutron Emission Model (NEM) with lower energy resolution.
 - The new PNEM is expected to provide much accurate capture strength with inclusion of proton and Coulomb barrier effect with higher energy resolution.

UTM

N-Z dependence of OMC Rates

- Observations on neutronproton ratio (N-Z) dependence.
- Implications for nuclear structure and decay mechanisms.

Current challenges and advancements in experimental techniques

- The original Monument proposal envisaged three series of measurements at PSI on isotopes of interest for 0vββ decay and astrophysical applications.
- Our efforts started in ⁷⁶Se and ¹³⁶Ba (2021), ¹⁰⁰Mo for astrophysical applications in 2022, followed by ⁴⁸Ti in 2023 for setting a benchmark of ab initio calculations for 0vββ decay.

G.R.Araujo, et al. (MONUMENT experiment). Eur. Phys. J. C (2024) 84:1188 Innovating Solutions

Repair Anticle Experimental Physics The MONUMENT experiment: ordinary muon capture studies for 0xββ decay G. R. Araoja', D. Bujal', L. Bandis', V. Belov², E. Bossis^{1,4,4}, G. T. E. Coediss', B. Ejiri', M. Fomina', K. Karartee', A. Kacht', E. Mondraga', D. Z. W. Ng', D. W. Ng', D.

THE EUROPEAN PHYSICAL JOUR

- ⁹ Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia ¹⁰ Paul Scherrer Institut, Villigen, Switzerland ¹¹ Institute of Constructional and Analia University Construction University in Disease, Provide Read-11 Institute of Constructional and Analia University Construction University in Disease, Provide Read-11 Institute of Constructional and Analia University of Construction University in Disease, Provide Read-11 Institute of Constructional Constructional Construction (Construction), 2010.
- ¹¹ Institute of Experimental and Applied Physics, Carch Technical University in Prague, Prague, Czech Republ ¹² Department of Physics, University of Jyväskylä, Jyväskylä, Finland ¹³ International Centre for Advanced Training and Research in Physics (CIFRA), Bucharest-Magurele, Romani ¹³ International Centre for Advanced Training and Research in Physics (CIFRA), Bucharest-Magurele, Romani ¹⁴ International Centre for Advanced Training and Research in Physics (CIFRA).

Received: 13 April 2024 / Accepted: 7 October 2024 © The Author(s) 2024

Eur. Phys. J. C (2024) 84:1188 https://doi.org/10.1140/epic/s10052-024-13470-e

