Double Gamow–Teller giant resonance in ⁴⁸Ca studied by (¹²C, ¹²Be(O⁺₂)) reaction at 250 MeV/u

Akane Sakaue (CNS, the University of Tokyo) 2025.01.20 NME2025 @RCNP

Based on "Candidate for the Double Gamow–Teller Giant Resonance in ⁴⁸Ca Studied by the (¹²C, ¹²Be(0⁺₂)) Reaction at 250 MeV/Nucleon" A. Sakaue et al., PTEP 123D03 (2024) <u>https://doi.org/10.1093/ptep/ptae174</u>

Collaborators

A. Sakaue^{1,2}, K. Yako¹, S. Ota^{1,3}, H. Baba², T. Chillery¹, P. Doornenbal², M. Dozono^{1,4}, N. Ebina⁵,
N. Fukuda², N. Fukunishi², T. Furuno⁶, S. Hanai¹, T. Harada^{2,7}, S. Hayakawa¹, Y. Hijikata^{2,4,8}, K.Horikawa⁵,
S. W. Huang⁹, N. Imai¹, K. Itahashi², N. Kobayashi³, Y. Kondo^{2,5}, J. Li¹, Y. Maeda¹⁰, T. Matsui⁵,
S. Y. Matsumoto^{4,8}, R. Matsumura^{2,11}, S. Michimasa^{1,2}, N. Nakatsuka⁵, T. Nishi², K. Sakanashi⁶,
M. Sasano², R. Sekiya^{2,4,8}, N. Shimizu¹², Y. Shimizu², S. Shimoura^{1,3}, T. Sumikama², D. Suzuki²,
H. Suzuki², M. Takaki¹, S. Takeshige^{2,13}, H. Takeda², J. Tanaka^{2,3}, Y. K. Tanaka⁸, Y. Togano^{2,13}, R. Tsuji^{2,4,8},
Z. H. Yang^{3,9}, K. Yoshida², M. Yoshimoto², J. Zenihiro⁴, and T. Uesaka^{2,8,11}

- 1. Center for Nuclear Study, University of Tokyo,
- 2. RIKEN Nishina Center for Accelerator-Based Science
- 3. Research Center for Nuclear Physics, Osaka University
- 4. Department of Physics, Kyoto University
- 5. Department of Physics, Institute of Science Tokyo
- 6. Department of Physics, Osaka University
- 7. Department of Physics, Toho University
- 8. RIKEN Cluster for Pioneering Research
- 9. School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University
- 10. Faculty of Engineering, University of Miyazaki
- 11. Graduate School of Science and Engineering, Saitama University
- 12. Center for Computational Sciences, University of Tsukuba
- 13. Department of Physics, Rikkyo University

Double Gamow–Teller giant resonance

Double Gamow–Teller (DGT) transition - spin and isospin flip twice, $\Delta L=0$: $(\sigma\tau)^2$

- Double β decay: occupy ~ 0.01% of total strength of ($\sigma\tau)^2$
- Double Gamow–Teller giant resonance (DGTGR)
 - : occupy most of total strength of $(\sigma \tau)^2$

proposed in 1989 but **experimentally it is not established** Auerbach (Ann. Phys. 192, 77)

Observation of DGTGR is important

- Understanding of collective mode in spin-dependent space

Ec, Γ, ... : simple superposition of sigle resonance?

- DGTGR is main component of DGT
 - provide information on
 nuclear matrix element (NME) of Ονββ

experimentally

DGTGR↔0νββ NME

Observables of DGTGR is correlated with 0vßß NME

(¹²C, ¹²Be(0⁺₂)) reaction

Observation of DGTGR

— Double charge exchange (DCX) reaction using heavy ion (¹²C, ¹²Be(0⁺₂)) isomeric state

- $(E_{ex} = 2.3 \text{ MeV}, \tau = 330 \text{ ns})$
- ${}^{12}C(0^+_{g.s.}) \rightarrow {}^{12}B(1^+_{g.s.}) \rightarrow {}^{12}Be(0^+_2)$ are all dominated by $0\hbar\omega$ states \Rightarrow transition will be strong
- ¹²Be(0⁺₂) decays into g.s. with emmiting e⁺e⁻ \Rightarrow 511 keV γ ray deriving from annhilation of e⁺ serves as a tag of event

Pilot experiment at RCNP

Experiment at RIBF

Measurement of (¹²C, ¹²Be(O⁺₂)) at RIBF BigRIPS

Experiment at RIBF in 2021

The first experiment of $({}^{12}C, {}^{12}Be(O{}^+_2))$ at RIBF was performed in 2021

- Target : ⁴⁸Ca 10.3 mg/cm²
 - Double β decaying nuclei —CANDLES exp.
 - Doubly magic nuclei: precise theoretical calculation is possible
 - Single GT resonance is well studied

⁴⁸Ca target is coated with graphene sheet (4 μ m x2(up/downstream))

- Enhance thermal conductivity
- Prevent oxidation / nitrization

⁴⁸Ca target with graphene

Measurement of ⁴⁸Ca(¹²C, ¹²Be(0⁺₂)) for ~ 40 hours Intensity of primary beam ~ 600 pnA

Achievement of the first experment

Results of ⁴⁸Ca(¹²C, ¹²Be(O⁺₂))⁴⁸Ti measurement

Ex distribution of cross section for ${}^{48}Ca({}^{12}C, {}^{12}Be(O^+{}_2)){}^{48}Ti$ at 0–0.3°, 0.3–0.5°, 0.5–0.7°, ...

- $^{12}Be(0^{+}_{2})$ events were selected by γ gate
- acc. coin events of ^{12}Be and room BG γ were subtracted
- ⁴⁸Ca target with graphene coating
 - events from $^{12}C(^{12}C,\,^{12}Be(0^+{}_2))^{12}O$ contaminates at $E_x > 34~MeV \sim 6\pm 2\%$
- $\Delta E=1.5 \text{ MeV}, \Delta \theta_{CM}=0.2^{\circ}$
- cross section = 1.33 \pm 0.12 µb/sr in 0< Eex < 34 MeV, 0 < θ_{CM} < 0.3°
 - only statistical error is shown
 - overall uncertainty is ~ 40%

Results of ⁴⁸Ca(¹²C, ¹²Be(O⁺₂))⁴⁸Ti measurement

Expected angular distribution of DCX

In order to extract DGT components, angular disribution for DCX is estimated by **coupled channel calculation** with ECIS97

- intinal state: ${}^{12}C(0^+) + {}^{48}Ca(0^+)$
- intermediate state: ¹²B(1+)+⁴⁸Sc(1+) are assumed to be each channel
- final state: ${}^{12}Be(0^+) + {}^{48}Ti(0^+)$
- Transition form factors are obtained by folding microscopic transition using FOLD
- Global optical potential by T. Furumoto

T. Furumoto et al., PRC 85, 044607 (2012).

- $\Delta L_{DCX} = 0 : [\Delta L = 0] \otimes [\Delta L = 0] : DGT-like$
- $\Delta L_{DCX} = 1 : [\Delta L = 1] \otimes [\Delta L = 0]$
- $\Delta L_{DCX} = 2 : [\Delta L = 2] \otimes [\Delta L = 0]$

calculation / smeared with experimental resolution $\Delta \theta$

Extraction of B(DGT)

DGT transition strength $B(DGT) = \frac{1}{2J_i + 1} \left| \langle f \| (\sigma \tau)^2 \| i \rangle \right|^2$ was deduced from the extracted $\Delta L_{DCX}=0$ components under assumptions: $(1)\Delta L_{DCX}=0$ components are all attributed to DGT transition 2 DGT cross section at 0° is proportional to B(DGT) $\frac{d\sigma}{d\Omega}(0^{\circ}) = \hat{\sigma}_{\text{DGT}} F(q, \omega) B_{\text{target}}(\text{DGT}) B_{\text{projectile}}(\text{DGT})$ Transition strength $\Delta L_{DCX}=0$ cross section at 0° of target (⁴⁸Ca→⁴⁸Ti B_{projectile}(DGT): transition strength of projectile (¹²C→¹²Be) ■ B(DGT) of ${}^{48}Ca \rightarrow {}^{48}Ti$ 10 dB(DGT)/dE [/MeV] (B_{12C→12B}(GT) * B_{12B→12Be}(GT)) $\hat{\sigma}_{DGT}$: proportional coefficient $F(q,\omega)$: momentum transfer dependent term : obtained by reactcion calculation 30 20 40 Excitation enegy in ⁴⁸Ti [MeV]

15

Other possibility than DGT transition

In the extraction of $\Delta L_{DCX}=0$ components, other transitions with similar angular distribution to the DGT are not excluded

e.g. IsoVector Spin Monopole (IVSM) $(\hat{O}^{\pm}_{IVSM} = \sum \sigma_i \tau_i^{\pm} r_i^2) \rightarrow IVSM \otimes GT, IVSM \otimes IVSM,...$

Consider the expected energy where these modes emerges

Energy expected by adding E in single resonances

- DGTGR : E~28 MeV
- $E_{IVSM\otimes GT} \sim 39 \ MeV$
- $E_{IVSM\otimes IVSM} \sim 50 \text{ MeV}$

Prediction by shell model is distributed at Ex < 35 MeV</p>

- 0<E<34 MeV →DGT
- E>34 MeV

→IVSM⊗GT, DIVSM?

or DGTGR is pushed out to higher E?

Extraction of B(DGT) of ⁴⁸Ca→⁴⁸Ti

Constrain to Ονββ NME

Constrain to Ονββ NME

Future prospects

Higher statistics will make the situation clear and make possible detailed discussion

statistics x40 $\Rightarrow \Delta E_c = 0.8 \text{ MeV}$

Upgrade of setup Current setup: The loss due to lifetime of $^{12}Be(0^{+}_{2})$ is large make close the position of γ -ray detection $\pm \Delta E_c MeV$ to reaction point (F8 \rightarrow F5, for example) yield x2 Total NME of 0vBB GT-type Target choice ¹³⁶Xe : $\beta\beta$ decaying nucleus (KamLAND-Zen, PandaX) Tensor-type strength $\propto 2(N-Z)(N-Z-1)$ → cross section~x4 Fermi-type target thickness can be thicker (~yield x2.5) 22 26 24 28 Centroird energy of DGTGR in ⁴⁸Ti(0⁺) [MeV] Beam time x2 x40 in total N. Shimizu, J. Menéndez, K. Yako Phys. Rev. Lett. 120, 142502 N. Shimizu, Private communication

20

Summary

- We are aiming at the observation of **Double Gamow–Teller Giant Resonance** (DGTGR)
- Heavy ion double charge exchange reaction of (¹²C, ¹²Be(O⁺₂))
- Experiment at RIBF BigRIPS
 - use BigRIPS as a spectrometer with dispersion matching
 - γ ray detection by DALI2 for ID of ¹²Be(0⁺₂)
- First experiment on 48Ca target
 - We have obtained E_{ex} spectra with $\Delta E=1.6$ MeV and $\Delta \theta=0.17^{\circ}$
 - Iow BG measurement : S/N \sim 9:1
 - forward peaking at Ex ~ 20 MeV : Candidate of DGTGR
 - Extract DGT-like components : $E_c=23$ MeV, width=7 MeV, $\Sigma B(DGT)=22\%$ of sum rule value
 - Possibility of constraining NME

BACK UP

$0\nu\beta\beta \leftrightarrow DGTGR$

Shimizu, Menéndez, Yako PRL120

0vββ NME is sensitive to pairing

Observables of DGTGR will constrain 0vββ NME

Compare RCNP and RIBF

	RCNP	RIBF		
beam intensity	16 pnA	600 pnA		
data taking time	5 days?	1.5days		
eff. of γ detection	10%	70%		
DAQ, tracking eff.	~100%?	60%		
¹² Be(0 ⁺ ₂) survival ratio	70% 25%			
transmission	~100%	~100% 20%		
S:N 1:1		9:1		

observed yield(signal) was twice by at RCNP error for cross section has been 1/2

Calculated angular distribution

 $\Delta L_{DCX}=0$ (Smeared by $\Delta \theta$)

 $\Delta L_{DCX}=0$: peak at 0° $\Delta L_{DCX}=1, 2$: peak at 0.4°, 0.7°

Calculated ${}^{48}Ca+{}^{12}C\rightarrow {}^{48}Sc+{}^{12}B$ is compared to the data of ${}^{48}Ca({}^{12}C, {}^{12}B){}^{48}Sc(2.5 \text{ MeV})$

B(GT)_{48Ca→48Sc}=1.4 in this normalization cf. B(GT)_{48Ca→48Sc} = 1.09±0.01 (³He,t) measurement E. W. Grewe et al., Phys. Rev. C 76. 054307 (2007)

> reproduces up to ~1° Absolute value reproduces ~30%

Transition form factor

- One body transition densities for projectile system were obtained by NuSHellX
- OBTD for target system were settled arbitrary vale (Z=1) for each combination of the configurations of (f7/2, f7/2-1) and (f5/2, f7/2-1)

Table 4.1: (p,h) configuration and $B(DGT)$						
					Calculated	
$(p,h)_{48}Ca \rightarrow 48}Sc}$	$(p,h)_{48}$ Sc \rightarrow^{48} Ti	$B(GT)_{48}Ca \rightarrow 48}Sc}$	$B(GT)_{48}Sc \rightarrow 48Ti}$	$B_{\text{target}}(\text{DGT})$	cross section	
					[µb/sr]	
$(f_{7/2}, f_{7/2}^{-1})$	$(f_{7/2}, f_{7/2}^{-1})$	10.3	10.3	106	6.92	
$(f_{7/2}, f_{7/2}^{-1})$	$(f_{5/2}, f_{7/2}^{-1})$	10.3	13.7	141	10.46	
$(f_{5/2}, f_{7/2}^{-1})$	$(f_{7/2}, f_{7/2}^{-1})$	13.7	10.3	141	10.49	
$(f_{5/2}, f_{7/2}^{-1})$	$(f_{5/2}, f_{7/2}^{-1})$	13.7	13.7	188	16.04	

F(q,ω)

