Non-nucleonic correlations in DBD NMEs Hiroyasu Ejiri RCNP Osaka-U RCNP 2025-1

Thanks the organizers

The spin isospin strengths fade away from our place of DBD

Subjects to be discussed

- 1. Experimental approaches to DBD -Astro- v. NMEs.
- 2. Nuclear physics with N and B (Δ) and
- Spin isospin NMEs and NN and NA GRs (Giant Res.)
- 3 GT and SD summed strengths and $g_A(\Delta)$
- 4. QRPA with NN and NA
- 5. QP-GT, SD and DBD NMEs by QRPA with $N\Delta$
- 6. Concluding remarks

- S. Umehara and H. Ejiri, Universe 10-00247 (202\$)
- H. Ejiri, Phys. Rev. C. Letters C108, L011302 (2023)
- H. Ejiri, L. Jokiniemi and J. Suhonen, Phys. Rev. C Letters 105, L02250 (2022).
- H. Ejiri, J. Suhonen and K. Zuber, Phys. Rep. 797, 1 (2019). ²

Exp. approaches to DBD and astro v NMEs Double -v & astro-v P~100 MeV τ σ l=0-6 NMES are sensitive to models and τσ correlations,

pnQRPA with experimental inputs

Ejiri Jokiniemi Suhonen PRC L 104 2022

ROPP 2014 Vergados Ejiri Simkovic

Fig. 29. Effective values of g_A in different theoretical β and $2\nu\beta\beta$ analyses for the nuclear mass range A = 41 - 136. The quoted references are *Suhonen2017* [216], *Caurier2012* [233], *Faessler2007* [242], *Suhonen2014* [243] and *Horoi2016* [235]. These studies are contrasted with the ISM β -decay studies of *M*-*P1996* [229], *Iwata2016* [230], *Kumar2016* [231] and *Siiskonen2001* [228]. For more information see the text and Table 3 in Section 3.1.2 and the text in Section 3.1.3.

. Ejiri H, Suhonen J and Zuber Z 2019 Phys. Rep. 797 1

Double β decay, astro- vs and CERs at RCNP

A: Weak **v** interaction is very weak μ,ν_μ capture

B: EM photon via IAS

C: Strong interaction Nuclear reaction Strong interaction

Summed strength by CE Nuclear reactions

1 Central interactions with τ , $\tau\sigma$, and Y_L as weak F and GT multipole ones. Used weak $\tau\sigma$ response study Dominant at the RCNP E/A~0.1-0.2 GeV.

- 2. Tensor LS as well at q=0-0.5 /fm
- 3. Distortion and multi-step process get minimum at E/A=0.2 - 0.4 GeV.

 $V^{\text{eff}} = V^{\text{C}} + V^{\text{LS}} + V^{\text{T}},$ $V^{\text{C}} = V^{\text{C}}(r_{ij}) + V^{\text{C}}_{\sigma}(r_{ij})\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} + V^{\text{C}}_{\tau}(r_{ij})\boldsymbol{\tau}_{i}\boldsymbol{\tau}_{j} + V^{\text{C}}_{\sigma\tau}(r_{ij})\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\boldsymbol{\tau}_{i}\boldsymbol{\tau}_{j},$ $V^{\text{LS}} = \left[V^{\text{LS}}(r_{ij}) + V^{\text{LS}}_{\tau}(r_{ij})\boldsymbol{\tau}_{i}\boldsymbol{\tau}_{j}\right]\mathbf{L} \cdot \mathbf{S},$ $V^{\text{T}} = \left[V^{\text{LS}}(r_{ij}) + V^{\text{LS}}_{\tau}(r_{ij})\boldsymbol{\tau}_{i}\boldsymbol{\tau}_{j}\right]S^{\text{T}}_{ij}.$

H. Ejiri, J. Suhonen and K. Zuber / Physics Reports 797 (2019) 1-102

OMC Muon capture on ¹⁰⁰Mo at RCNP

100 Mo (μ , ν_{μ}) $^{100-n}$ Nb

Hashim-Ejiri Shima et al Jokiniemi Suhonen Ejiri Hashim

I. H. HASHIM et al.

PHYSICAL REVIEW C 97, 014617 (2018)

A: v from intense p

SNS (Spallation N) ORNL JPARC

 $\pi^{+} = \mu^{+} + \nu_{\mu} \quad \mu^{+} = e^{+} + \nu_{e} + anti - \nu_{\mu}$ N~10¹⁵/sec. 10% is used to irradiate 1 ton target Yield = 0.6 10⁻¹/sec for 10⁻⁴¹cm² for a low GT state

Accelerator v: reactions H. Ejiri , NIM A503, 276 2003. Lepton (e v μ) CERs μ -v_{μ} CER used at Hashim Ejiri RCNP

Photon γ Isospin rotation for charged current responses via IAS <f $|g M_{\beta}| i > = g/e (2T)^{1/2} < f |em_{\gamma}|IAS>$

H. Ejiri PRL 21 '68, H. Ejiri PR 38 '78, PR C Letters 108, L011302, 2023

2. Low E (0.01 GeV) nuclear physics with A A = No of Baryons to be conserved, not nucleon number Nucleus <0.01 GeV is composed A baryons, p,n,Δ etc. with interaction fields of π, ρ, K, and other mesons.

Baryons like ∆(1232) etc are effective in case of resonances, i.e Amplitude : V=50/A MeV / mass difference =300 MeV =0.001, Probability=(Amplitude)²=0.0000001 per nucleon.
NME= 200 coherent ∆ amplitudes =0.2 quench or enhance

2. Nuclear physics with N and B (Δ) co exist Coherent NN and ND correlations negative polarize $\tau\sigma$ fields to get $g_A^{eff} < 1$ as electric field positive polarize to get pol. $e^{eff} > 1$

Weak $n^{-1}p$ transition with $n^{-1}p$ GR and $N^{-1}\Delta$ GR

 $M=M_0 - \epsilon M(GR-N) - \delta M(GR-D)$ Tamn Dankoff

NN: $(V=30MeV/A)/10 MeV = mixing amplitude ~ 3 10^{-2}$ $(3 10^{-2}) \times (N-Z = 20 \text{ coherent}) = 0.6 \text{ quench}$. NA: (V=50 MeV/A)/300 MeV mass difference = $= mixing amplitude \text{ for } A=100 \text{ is } ~6 10^{-4}$. A -nucleons produce $2A \Delta \text{ of } \Delta^0 \Delta^- \Delta^+ \Delta^{++}$ coherent $6 10^{-4} \times 2A=0.3$, reduce $K_{\Delta} = 0.2$ reduction $\Delta \text{ probability in } A \text{ nucleus} = (6 10^{-4}) \times 2A = 10^{-4}$ 12 RCNP cyclotron E/A= 0.1 GeV warrants one step CER. Spectrometer with energy resolution 30 keV is used to select individual states up to 30 MeV of current interest. Momentum transfer 0-200 MeV/c at θ =0-3 deg.,for L=0.1.2. These are powerful for studies of astro-v and DBD NMEs

3. GT and SD summed στ strengths shift to NN GR and N∆ GR reflecting non-nucleonic ∆ correlations

CER nuclear interaction

Cross section for GT at 0 deg. L=0, J=I+ cross section with $|j_0(qr)|^2 \sigma(\sigma^S, f(r) r^n, Y_l, J) L$ S=1, 0 n=0, 2,4,6 Radial node n=2,4, Dominant >20 MeV l=0, 1, 2, 3, 4J=1+, 1,- 2±, 3± at 0 deg.

GT as well as non GT, which is partly as quasi-free scattering

```
RCNP (<sup>3</sup>He.t)
B(GT)= 0.48 × Sum=3(N-Z) *
g' _{\Delta N} = 0.43
```

- **IFF** Sum –rule $\beta^- \beta^+ = 3(N-Z)$
- based on the simple nucleon model ,
- Made of A nucleons (not in case of A baryons).

RCNP CERs with (³He,t) reactions

QF Quasi-free scattering with Δn=0 (GT), Δn=2, 4, 6 =Non GT from the calculated ratio of n=0 and n=2

C. Douma et al, Ejiri RCNP Euro Phys 56 51 2020

6. NN GR GT Energy and NN interaction

FIG. 3. Left panel: Summed GT strength of $S^{-}(\text{GT})$. Blue sqares: (³He,t) on DBD nuclei. Blue diamonds: (³He,t) on Sn isotopes. Light blue squares: (p,n). Solid thin line: $S_{\rm N}(\text{GT})$. Thick line: 0.47 $S_{\rm N}(\text{GT})$. Right panel: Summed SD strength of $S^{-}(\text{SD})$. Blue triangle: (³He,t) on DBD nuclei. Light blue sqaure: sum rule limit of $S_{\rm N}(\text{SD})$. Thick line: 0.50 $S_{\rm N}^{-}(\text{SD})$.

IFF S(GT)=3(N-Z)S-(SD)= $\Sigma(2l+1)(N^{eff}/2\pi) < r^2 >$ $r^2=0.6 \ R^2$ with R~1.35 A^{1/3} for n to p effective radius

Summed GT strengths ~ 0.5 of IFF. One claims

FIG. 13. Gamow-Teller strength distribution (filled circles) obtained from the 0° L=0 cross section which is deduced from the MD analysis. The dashed curves and hatched histogram represent the SRPA calculation by Drożdż *et al.* [22] and the perturbative calculation by Bertsch and Hamamoto [15], respectively. The

Wakasa et al PR C 55 2909 1997 Full 3(N-Z) , mainly in 2,4,6 hω

Berch Hamamoto PR C 26 1323 1082 B(GT) > 50 % of 3(N-Z) beyond GT-GR No Δ coupling

5. Exp. Axial vector $(\tau \sigma)$ QP NME

$$\begin{split} M(QP) &= UV \ M(SP) \ Vacancy-occupation \ corrected \ SP \ NME \\ M(EXP) &= K_{EX} M(QP) \quad K_{EX} \sim 0.21 : reduction \ coefficient \\ K_{EX} &= K_{QR} \ K_X \ K_\Delta \quad k_{QR} = 0.4 \ for \ NN \ \tau\sigma \ correlations \ (\ NN \ GR) \end{split}$$

 K_{Δ} =0.7 NΔ τσ correlations (NΔ GR)

K_m =0.8 NN medium effect (deformation)

FIG. 4. Quenching coefficients. Blue triangles: $K_{\text{EX}}(\text{GT})$ and Blue squares: $K_{\text{EX}}(\text{SD})$. Thick blue line: $K_{\text{EX}}=0.21$. Thick dotted blue line: K_{N} . Thin dotted red line: $K_{\Delta}=0.7$.

Universal reductions of axial vector $\beta \& \gamma$ in low p

 $\begin{array}{ll} k=k(\tau\sigma)\;k(NM)\sim 0.25 & \text{with respect to } QP\\ k=k(\tau\sigma)\sim 0.4 : \text{Nucleonic long range } \tau\sigma\;GR\\ k(NM)\sim g^{\text{eff}}_{A}/g_{A}\sim 0.6 : \text{Short range nucl. medium } \Delta\,\pi\\ \text{H, Ejiri J. Suhonen J. Phys. G. 42 2015}\\ \text{H. Ejiri N. Soucouti, J. Suhonen } \text{PL B 729 2014} \\ \text{L. Jokiniemi J. Suhonen H. Ejiri } \text{AHEP2016 } \text{ID8417598} \end{array}$

 g_A =1 for quark in case of hadron physics like one baryon. g_A =1.27 for nucleon effective g_A in case of nucleon (n, p) g_A^{eff} =0.7x1.27=0.9 for nuclear physics of effective nucleons with reduced spin –isospin amplitude

Fig. 29. Effective values of g_A in different theoretical β and $2\nu\beta\beta$ analyses for the nuclear mass range A = 41 - 136. The quoted references are *Suhonen2017* [216], *Caurier2012* [233], *Faessler2007* [242], *Suhonen2014* [243] and *Horoi2016* [235]. These studies are contrasted with the ISM β -decay studies of *M*-P1996 [229], *Iwata2016* [230], *Kumar2016* [231] and *Siiskonen2001* [228]. For more information see the text and Table 3 in Section 3.1.2 and the text in Section 3.1.3.

. Ejiri H, Suhonen J and Zuber Z 2019 Phys. Rep. 797 1

NN GR GT Energy and NN interaction

ND interaction pushes down the NN GR(GT) NN interaction pushes up the NN GR(GT). Using ND $g'_{N\Delta}=0.5$ (($\chi_{\Delta}=48$ MeV) from the summed strength, and the experimental N-GR GT energies, one gets $g'_{NN}=0.62$ ($\chi_{N}=30$ MeV), as Julich Tokyo potential

Delta GR energy and cross section

Cross sections are proportional to A as observed in (γ ,A) Recoil energy ~ 50 MeV for p and 0.5 MeV for A=100.

5. QRPA $(\tau\sigma)$ QP NME M(QP)= UV M(SP) Vacancy-occupation corrected SP NME Reduced(quenched) due to NN and NA $\tau\sigma$ correlations

$$M = K_{\mathrm{N}\Delta}M_{\mathrm{QP}}, \quad K_{\mathrm{N}\Delta} = \frac{1}{1 + \kappa_{\mathrm{N}} + \kappa_{\Delta}},$$

 $K_{N\Delta}$ = NN and NΔ τσ GR correlations χ_{Δ} =48 MeV from the summed strength =0,7 κ_{Δ} =0.43

$$\kappa_N = \frac{\chi_N}{A} \frac{N_f G^2}{\bar{\epsilon} - \epsilon_1},$$

 $\kappa_{\rm N}$ =2.1 from NN τσ correlations $\chi_{\rm N}$ =30 MeV derived from EXP GR GT energy $K_{\rm AN}$ =1/(1+2.1 + 0,43)=0.28,

Further reduction of K_m =0.8 due to nuclear medium effect to get the K=0.21 as observed. This is for all particle transfer reaction.

6. Concluding remarks

1. The summed GT and SD (spin dipole) strengths measured by (³He,t) on DBD nuclei are quenched by $(g^{\Delta}_{A}/g_{A})^{2}=(0.7)^{2}$ with respect to 3(N-Z) IFF limit based on a simple N model. This indicates non-nucleonic $\tau\sigma \Delta$ (lowest baryon) correlation.

2. Axial vector β QP NME and $\beta\beta$ NME are reduced by $K_{EX}\sim0.21$, due to the NN correlations of $K_{N}\sim0.4$ and the nuclear medium effect of $K_{M}\sim0.8$ and the Δ GR effect of $K_{\Delta}=0.7$.

3. The experimental quenching coefficients are well reproduced by the QRPA with such NN and N Δ interactions of $g'_{NN} \sim 0.62$ and $g'_{N\Delta}=0.5$. that reproduce the experimental NN and N Δ GR (giant resonance) energies and the summed strength.

4. The \triangle effect, being due to the strong nuclear $\tau\sigma$ interaction, quenches all weak, electro-magnetic and strong $\tau\sigma$ NMEs.

Sun set /rise ? Thank you for your attention ²⁶