Perturbation of transition operators of double-β decay

J. Terasaki, Inst. of Exp. and Appl. Phys., Czech Tech. Univ. in Prague O. Civitarese, Depart. of Phys., National Univ. of La Plata

- 1. Purpose and background
- 2. Extension of NME
- 3. Diagrams to calculate
- 4. Result of calculation
- 5. Summary

0vββ: neutrinoless double-β; 2vββ: two-neutrino double-β QRPA: quasiparticle random-phase approximation NME: nuclear matrix element 1

Jan. 21, 2025

Osaka, Japan

1. Purpose and background

To solve the uncertainty problem of the $0\nu\beta\beta$ NME

J. T. investigated the validity of the QRPA with Skyrme (SkM*) + Coulomb + contact pairing interaction for ¹³⁶Xe by theoretical self-checks and comparisons with exp. data. J. T. and Y. Iwata, Phys. Rev. C **100**, 034325 (2019).

The QRPA + those interactions is excellent for ¹³⁶Xe.

The effective g_A for $2\nu\beta\beta$ decay is 0.42 << 1.27.

⇒ Need to apply perturbation theory to calculate corrections to the transition matrix elements

Another motivation

It is possible to obtain effective g_A (g_A^{eff}) by referring to the perturbed NME. What is the g_A^{eff} for the 0v $\beta\beta$ decay?

2. Extension of NME

Basic principle \equiv hybrid model of two approaches

- Application of the quantum field theory to leptons
- Application of the Rayleigh-Schrödinger perturbation theory to nucleons

Extension of NME

- Apply the **2nd-order** perturbed wave function for the transition matrix element.
- Set the transition operator and one perturbation interaction to the hadron current. Set the other one to the residual NN interaction.
- Suppress the double counting.
- Factorization to the electron and the *v*-nuclear sectors $(0v\beta\beta)$.
- Choose the terms including only the **perturbation of the transition operator**, referring to diagrams.

3. Diagrams to calculate $0\nu\beta\beta$ NME

Leading order with respect to vertex

Incoming \rightarrow to a vertex : annihilation of nucleon Outgoing \rightarrow from a vertex : creation of nucleon

Green dots: pion

Vertex correction (VC) Light blue dashed: NN interaction potential

Two-body current (2BC) correction

4a. Result of calculation, NME

SkM*							
	Ονββ ΝΜΕ		2νββ ΝΜΕ				
	GT	Fermi	GT	Fermi			
Leading	3.095	-0.467	0.102	-0.00221			
VC	1.332	-0.984	0.0545	-0.0328			
2BC	-2.731	1.758	-0.192	0.0301			
Sum	1.695	0.306	-0.035	-0.00488			

- The correction terms are comparable with the leading terms.
- The summed correction has the opposite sign to that of the leading term.
- If $g_A = 1.27$ is used, leading $M_{0v}^{(0)} = 3.384$, with the corrections $M_{0v} = 1.505$.
- 90% of VC and 2BC terms of 2vββ Fermi component; symmetry conserving truncation.

4b. Result of calculation, $g_A^{\rm eff}$

Four kinds of g_A^{eff} are introduced. $\begin{pmatrix} g_{A,0\nu}^{eff} (\text{Id}; \text{pert}) \end{pmatrix}^2 M_{0\nu}^{\text{GT}(0)} - g_V^2 M_{0\nu}^{\text{Frm}(0)} = g_A^2 M_{0\nu}^{\text{GT}} - g_V^2 M_{0\nu}^{\text{Frm}},$ The Id implies this g_A^{eff} is used with the leading GT and Fermi comp. The pert implies this g_A^{eff} is deter -mined referring to the perturbed NME $(g_A=1.27)$

- Analogous definition for $2\nu\beta\beta$ NME introduced $[g_{A,2\nu}^{eff}(ld; pert)]$.
- Experimental half-life can be used for the $2\nu\beta\beta g_A^{eff}$. That for ¹³⁶Xe is 2.18×10²¹ y. $g_{A,2\nu}^{eff}$ (ld; phen) and $g_{A,2\nu}^{eff}$ (pert; phen)

SkM*								
$g_A^{ m eff}$ by different methods	Decay	Used GT and Fermi components	Reference to reproduce	Value				
$g_{A,0\nu}^{\mathrm{eff}}(\mathrm{ld};\mathrm{pert})$	0νββ	Leading	Half-life with perturbed NME and bare g_A	0.796				
$g^{ m eff}_{A,2 u}(m ld;\ m pert)$	2νββ	Leading	Half-life with perturbed NME and bare g_A	0.696				
$g_{A,2\nu}^{\rm eff}$ (ld; phen)	2νββ	Leading	Experimental half-life	0.422				
$g_{A,2\nu}^{\rm eff}$ (pert; phen)	2νββ	Perturbed	Experimental half-life	0.806				

• Three of these g_A^{eff} are close: 0.7– 0.8.

The g_A^{eff} for the $0\nu\beta\beta$ NME is not quite different from that for the $2\nu\beta\beta$ NME.

• The smaller g_A^{eff} , the larger perturbation effect.

4c. $0\nu\beta\beta$ NME with bare g_A for ¹³⁶Xe of various groups

[1], [2], and [8] show vertical ranges. The other symbols show single values.

- [1] J. Menéndez, J. of Phys. G 45, 014003 (2018).
- [2] M. Horoi and A. Neacsu, Phys. Rev. C 93, 024308 (2016).
- [3] L. Coraggio et al., Phys. Rev. C **101**, 044315 (2020).
- [4] L. Coraggio et al., Phys. Rev. C 105, 034312 (2022).
- [5] M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
- [6] J. Hyvärinen and J. Suhonen, Phys. Rev. C 91, 024613 (2015).
- [7] F. Šimkovic et al., Phys. Rev. C 98, 064325 (2018).
- [8] D.-L. Fang et al. Phys. Rev. C 97, 045503 (2018).
- [9] J. Terasaki, Phys. Rev. C 102, 044303 (2020).

- [10] T. R. Rodríguez and G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010).
- [11] N. L. Vaquero et al., Phys. Rev. Lett. 111, 142501 (2013).
- [12] L. S. Song et al., Phys. Rev. C 95, 024305 (2017).
- [13] J. Barea et al., Phys. Rev. C **91**, 034304 (2015).
- [14] F. F. Deppisch et al., Phys. Rev. D 102, 95016 (2020).

See also I. Shimizu, Int. Conf. Neutrino 2024.

5. Summary

- We calculated the NME of $\beta\beta$ decay with the transition operator perturbed by the nuclear interaction.
- The perturbation effect is significant. The NME is reduced.
- Four g_A^{eff} were calculated depending leading or perturbed and the reference.
- Similarities are found for some of those g_A^{eff} 's including that of the $0\nu\beta\beta$ NME.

The g_A^{eff} of the 0v $\beta\beta$ NME is close to that of 2v $\beta\beta$ calculated by the same method. The 0v $\beta\beta$ g_A^{eff} is no longer unknown at all.

We will also calculate other nuclei in the future.