

「研究用原子炉を用いた原子核素粒子物理学」

Chart of the nuclides $(2014 \rightarrow 2018)$

CHART OF THE NUCLIDES 2014

Compiled by

Hirovuki KOURA Advanced Science Research Center Japan Atomic Energy Agency Shirakata-shirane 2-4, Tokai-mura, Ibaraki 319-1195, Japan E-mail: kcura.hiroyuki@jaea.go.jp

Takahiro TACHIBANA

Research Institute for Science and Engineering Waseda University Okubo 3.4-1, Shinjuku ku, Tokyo 169-8555, Japan E-mail: ttachi@waseda.jp

Jun-ichi KATAKURA

Department of Nuclear System Safety Engineering Nagaoka University of Technology Kamitomioka-machi 1603-1, Nagaoka, Niigata 940-2188, Japan

Symbol

小浦寛之氏 (JAEA) のホームページより引用 https://asrc.jaea.go.jp/soshiki/gr/HENS-gr/np/koura/infoKourapublic.html

その2)実験的に見つかった原子核の数が、 3150核種(2014年度版)から3299核種に!

			refe		1222	S. Friday	#236.m				
		⁷⁴ Zn	78Zm	78Zn	Zn	""Zn	⁷⁸ Zn	^{so} Zn	^{s1} Zn	"Zn	*SZz
		1.59.4	16.7 .	100	718.a #1.05.5	147.1	746-17	35 Fms	505 2 m	180.8 mm	117 m
		"Cu	⁷⁴ Cu	*Cu	"Cu	²⁷ Cu	⁷⁸ Cu	¹⁰ Cu	⁵⁰ Cu	^{A1} Cu	42 Ca
		425	1.67.4	1.224	64.1 mm	467.9 mm	130.9 ам	240.0 m.s	113.6-mi	73.2 ms	18.4 10
		72 Ni	⁷⁸ Ni	⁷⁴ Ni	78Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni	79Ni	⁸⁰ Ni	81 Ni
_		1.37 1	840.00	107.7.01	(and	2.96.9 ms	128.9 85	(4.2 mm	\$3.9 ms	21.9 m	12.1 10
	217 Nn	218Nn	219 N	Ip 22	SHC0	20 Ca	²⁶ Co	¹⁷ Ca	⁷⁸ Co	²⁰ Co	²⁰⁰ Ce
	1.11	155.	1000		H.Lew	26.9 mg	21.7 mis	13 C #15	-	3 70 144	3.25 mm
	a 361 ms	a 16.6 s	150 µs	a	TFO	To Fo	²⁸ Fe	¹⁰ Fe	"Fe	⁷⁸ Fe	⁷⁹ Fe
4	216U	217U	2181	U 2	15.8 m.s	PARA	PA F CE	2.4163	1.40 mm	2.79 ms	2.35 mm
⁴ n		16 ma	510.0		72Mn	"BMa	¹⁴ Mn	²⁵ Mn	⁷⁸ Mn	77Mn	Contraction of the
Contraction of the Contract	4.5 ms				9.01.011	2.54 m	1.29 m	4.00 mm	2.19	171.00	53
	215Pa	216Pa	217 F	a 2	⁷¹ Cr	7ºCr	Cr	74Cr	10.000		
			3.8 m	15	10.00	4.300	JACO	2.00.00	-51	52	Tel Carlo
	14 ms	150 ms	#1.08	3915							
1											
4											

1. 新たに測定された149の新同位体を収録。

2. ウラン、ネプツニウム、アメリシウム等の中性 子欠損核*を収録

3. 4つの中性子のみから構成される原子核と報告 された「テトラ中性子」を掲載 *中性子欠損核:通常の原子核より中性子の数が少ない原子核

「原子力機構 核図表2018 の詳細」

https://wwwndc.jaea.go.jp/CN18_J/jcnq.html

テトラニュートロンの束縛状態の示唆(2022)

T. Faestermann et al., Phys. Lett. B 824 (2022) 136799 https://www.tum.de/en/about-tum/news/press-releases/details/37068

それ以外の実験的研究

Eur. Phys. J. A (2021) 57:105 https://doi.org/10.1140/epja/s10050-021-00417-8

Review

The quest for light multineutron systems

F. Miguel Marqués^{1,a}, Jaume Carbonell²

¹ LPC Caen, Normandie Université, ENSICAEN, Université de Caen, CNRS/IN2P3, 14050 Caen, France

² Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

)	Mul	tineutron experiments	
	2.1	The pion probe	
	2.2	Fission and other activation probes	۷
	2.3	The multinucleon-transfer probe	4
	2.4	The GANIL 2002 result	(
	2.5	The RIKEN 2016 result	_
	2.6	The neutron probe	8
	2.7	A 60-year quest	(

THE EUROPEAN PHYSICAL JOURNAL A

理論計算 (Green Function Monte Carlo)

S. C. Pieper, Nucl. Phys. A 751, 516c (2005)

modified NN interaction changes energies of other nuclides, including di-neutron

inclusion of extra 3N or 4N interaction drastically changes energies of A>4 nuclides

S. C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

テトラニュートロンの現状のまとめ

- 実験からは2つのポジティブな結果
 - ⁴He(⁸He,⁸Be)⁴n: 幅の狭い共鳴状態 (E>0)? [2016年]
 - 7Li(7Li,10C): 束縛状態 (E<0)? [2022年]
- 理論計算(詳細は p.6 のレビュー論文を参照) 計算手法により大きく異なる結果
 - ○幅の狭い共鳴状態が存在
 - ○観測可能な共鳴状態は存在しない

現時点で確実に言えること

• 結合エネルギー $B = -E_{4n} = [4m_n - m(4n \Re)]c^2$ が $\circ B > 0 ならば束縛状態$ 弱い相互作用で ${}^{4}n \rightarrow {}^{4}H + e^{-} + \overline{\nu}_{e} \geq \beta$ 崩壊 (第1禁止遷移) OB < Oならば非束縛状態強い相互作用で $4n \rightarrow n + n + n + n$ と即座に崩壊 共鳴状態として観測できるかは崩壊幅に依存 結合エネルギーBの上限値B < 1.5 MeV ¹⁹B (半減期2.92ms) の4中性子分離エネルギー $S_{4n} = 1.5$ MeV

To be, or not to be, that is the question.

To be bound, or not to be bound, that will be the question.

 $E= 0.83 \pm 0.65 \pm 1.25 \text{ MeV} (\text{RIBF})$ $E=-0.42 \pm 0.16 \text{ MeV} (\text{München})$

放射化法による **bound tetraneutron** 探索

Eur. Phys. J. A (2021) 57:105 https://doi.org/10.1140/epja/s10050-021-00417-8

Review

The quest for light multineutron systems

F. Miguel Marqués^{1,a}, Jaume Carbonell²

¹ LPC Caen, Normandie Université, ENSICAEN, Université de Caen, CNRS/IN2P3, 14050 Caen, France

² Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

2	Mul	tineutron experiments	
	2.1	The pion probe	
	2.2	Fission and other activation probes	Z
i	2.3	The multinucleon-transfer probe	4
	2.4	The GANIL 2002 result	6
	2.5	The RIKEN 2016 result	
	2.6	The neutron probe	8
	2.7	A 60-year quest	9

THE EUROPEAN PHYSICAL JOURNAL A

 $^{A}Z \rightarrow ^{A+2}Z$

核分裂+放射化法による bound tetraneutron 探索

	反応	2 <mark>n</mark>	4n	⁶ n, ⁸ n
Schiffer et al.	thermal n+ ²³⁵ U	(²7Al→²8Mg)	$^{14}N \rightarrow ^{17}N$ $^{27}Al \rightarrow ^{28}Mg$	
Cierjacks et al.	50 MeV d+ ²³⁸ U		¹⁴ N, ¹⁶ O→ ¹⁷ N ²⁶ Mg→ ²⁸ Mg ¹⁰³ Rh→ ¹⁰⁵ Rh ²⁰⁹ Bi→ ²¹¹ Bi, ²¹² Bi	
Détraz	24 GeV p +W		64,66,67,68,7	^D Zn→ ⁷² Zn
Turkevich et al.	700 MeV p+ ²³⁸ U			²⁰⁸ Pb→ ²¹² Pb
De Boer et al.	130 MeV ³ He+Te		¹³⁰ Te→ ¹³² Te	
V.K. Rao et al.	thermal n+235U			206,208Pb→212,213Pb 85,87Rb→91,92Rb
K. Otozai et al.	thermal n+²³⁵U, n+ºBe→6He(→α+²n)+α	$^{27}Al \rightarrow ^{28}Mg$		
Novatsky et al.	62 MeV α+ ²³⁸ U			⁸⁸ Sr→ ⁹² Sr ²⁷ Al→ ²⁸ Mg

Schiffer et al. の実験

- 燃料要素の端から8cmの位置で
 - アミトロール C₂H₄N₄3.5g に照射
- 燃料要素中心のシンブル内で 高純度のアルミニウム1.4gに照射
- ¹⁷Nの遅発中性子, ²⁸Mgの放出γ線は有意に観測されず

● ¹⁴N(⁴n,n)¹⁷N, ²⁷Al(⁴n,t)²⁸Mg 反応の生成物 ¹⁷N, ²⁸Mg を探索

・現時点で唯一の、研究炉におけるテトラニュートロン探索

J.P. Schiffer and R. Vandenbosch, Phys. Lett. 5, 292 (1963)

Table 1 Relative frequencies of various known and postulated particles in fission.

Particle	Number observed per 1
a a p d, He ³ t n ⁴ n ⁴ n ²	$ \begin{array}{l} 500 \ (U^{235} + thermal r \\ 330 \ (Cf^{252}, spontaneo \\ 7.4 \ (Cf^{252}) \\ < 1.5 \ (Cf^{252}) \\ 20 \ (Cf^{252}) \\ 20 \ (Cf^{252}) \\ < 0.002 \ (from N^{17} activity) \\ two assumption \\ < 0.04 \ in the text) \\ < 0.0005 \ (from Mg^{28} ac $

.0⁵ fissions

n) ous fission)

ity and the s stated

:tivity) :tivity) 【仮定】 反応断面積 ¹⁴N(⁴n,n)¹⁷N...50mb ²⁷Al(⁴n,t)²⁸Mg...40mb

重水に含まれる原子核 (D, O) の反応断面積 … 0.5 b (平均自由行程 25cm)

核分裂あたりの テトラニュートロン生成率 < 5 × 10⁻⁹

• $n + {}^{235}U \rightarrow {}^{A}Z + {}^{A'}Z' + xn$

- 平均2.5個の即発中性子を放出
- 約200 MeV のエネルギーを放出
- 出力 10MWの原子炉では毎秒 $10 \times 10^{6} / (200 \times 10^{6} \times 1.6 \times 10^{-19}) = 3 \times 10^{17}$ 回の核分裂
- (生成率 10⁻⁹ であっても毎秒) 10⁸個のテトラニュートロンが生成) ⁻

八木浩輔『原子核物理学』

表 18 遅い中性子による²³⁵Uの核分裂エネルギーの平均的な配分

分裂破片の運動エネルギー (A~96, A~140)	165
分裂中性子の運動エネルギー(2~3個)	5
即発の饣線エネルギー(~5本)	6:
分裂生成物からのβ線のエネルギー(~7本)	8:
分裂生成物からのγ線のエネルギー(~7本)	6:
分裂生成物からのニュートリノのエネルギー	12:
核分裂の全エネルギー	202:

図2 AMD 法による²³⁶U の核分裂の様子。ネックの断裂直 後に励起した核分裂片の表面から即発中性子が放出されて いる。AMD の計算結果は共同研究者の陳敬徳氏からご提 供いただいた。

ternary fission

Isotope (ordered by element and mass)

ternary fission

新研究炉で実施したい測定のアイデア

①照射孔で試料に4nを照射 $^{A}Z(^{4}n, n)^{A+3}Z 反応により生じる^{A+3}Z を$ 機器中性子放射化分析と同様の 手法により探索する **2 tetraneutron beamline** テトラニュートロンをビームとして 測定室へと導き、オンライン測定 様々な反応の研究、半減期の測定 etc.・・?

○存在するか否か 束縛するか否か 仮にテトラニュートロンが束縛状態として存在すれば、 研究炉は極めて有望な研究環境となりうる

- 近年テトラニュートロン (4n) の発見の報告が相次いでいる
- ●機器中性子放射化分析と同様の測定により、標的原子核^AZ から生成される^{A+3}Zなどを探索(放射化学的アプローチ)
- 炉心から直接延びるビームラインを構築し、テトラニュート ロンと原子核の反応を調べる(原子核物理的アプローチ)

