ニュートリノ振動研究の現状と 研究用原子炉によるステライルニュー トリノ探索の可能性

都立大物理·安田修

FPUR2022@RCNP

2022年5月30日

混合行列

1.1 3世代v 振動の枠組み

両方の質量パター ンが許容されている

1.2 現時点までにわかっていること(1)

V_{solar}+KamLAND (原子炉)

$$\boldsymbol{\Theta}_{12} \cong rac{\pi}{6}, \Delta m_{21}^2 \cong 8 imes 10^{-5} \, \mathrm{eV}^2$$

v_{atm}+T2K+NOvA(加速器)

 $\theta_{23} \cong \frac{\pi}{4}, |\Delta m_{32}^2| \cong 2.5 \times 10^{-3} \, \mathrm{eV}^2$

Daya Bay+DCHOOZ+Reno(原子炉) +T2K+NOvA(加速器)+others

$$\boldsymbol{\theta_{13}}\cong \boldsymbol{0.15}\pm \boldsymbol{0.01}$$

1.2 現時点までにわかっていること(2)

- 両方の質量パターンが許容されている
- • δ ~- $\pi/2$ がbest-fitになっているがまだ確定 した訳ではない

Gonzalez-Garcia, Maltoni, Schwetz, arXiv:2111.03086v2 [hep-ph]

1.3 3世代間のv振動を拡張する可能性

MiniBooNE実験

LSNDを追試するための実験なはずだったが、 結論はどっちつかずになっている

E~1GeV, L~1km, (L/E)_{MB}=(L/E)_{LSND}

近年Neutrino-4実験が肯定的結果を出している

Neutrino-4, arXiv: 2005.05301 [hep-ex]

IceCube実験が1.7σで肯定的結果を出してはいるが、 強い証拠とは考えられていない

N,=4の枠組

scheme	accelerator + reactor	solar + atmospheric
(3+1)	tension	\checkmark
(2+2)	\checkmark	excluded

(3+1)-scheme

全てをうまく説明できるシナリオはない

原子炉 $_{\vee}$ 実験を動機付けるにはLSND/MB をとりあえず忘れて $\overleftarrow{\nu_e} \rightarrow \overleftarrow{\nu_e}$ の肯定的 結果の検証を目指す

2. 実験原子炉ニュートリノの混合角度θ₁₄への感度

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \, \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

至近距離の近距離L_Nと遠距離L_Fに測定器を 置き、L_NとL_Fについて感度を最適化

<E>~4MeV, L=10m→ナイーブには Δm²~1eV²程度の感度は期待できる

2.1 商業炉の場合 (D=4m, h=4mの円筒形を仮定)

Assumed parameters (a la Bugey)

• Power: 2.8 GW

Power density~50MW/m³

• Size of the core: Diameter=4m, Height=4m

Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2 = 1eV^2$

2.1 商業炉の場合 (D=4m, h=4mの円筒形を仮定)

最適な距離の組み合わせは L_N=17m, L_F=23m

青線: point-likeな炉心を持つと仮定した仮想的な場合 → 感度は実際の場合より良い

2.2 小さな炉心を持つ実験炉

● **常陽(茨城県大** 洗): D=0.8m, h=0.5m, P_{th}=140MW

ILL reactor (Grenoble, France):D=0.4m, h=0.8m, P_{th}=58MW

Nucifer project

Osiris reactor
 (Saclay, France):
 0.57m × 0.57m ×
 0.6m, P_{th}=70MW

Power density~500MW/m³

cf. ~50MW/m³ for commercial reactors

Joyo (A fast neutron reactor)

Assumed parameters

- Power: 0.14 GW
- Size of the core: Diameter=0.8m, Height=0.5m

Optimization w.r.t. baseline lengths L_N , L_F for $\Delta m^2 = 1eV^2$

最適な

OY, 1107.4766 [hep-ph]

最適な距離の 組み合わせは L_N=4m, L_F=8m

小さな炉心を持つ実験炉における感度

- 原子炉∨フラックスの再評価により、質量二乗差 Δm²~O(1eV²)のステライル∨振動のシナリオが再度注目されている。
- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ のLSND/MiniBooNEは、 $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$ の原子 $\overline{\nu}_{v}$ の否定的結果と $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ の加速器 $_{v}$ の否定的結果 を組み合わせた上限値と矛盾しており、一部(あるいは 全部)を無視しないと $_{v}$ 振動と解釈できない。
- 研究炉は一般的に炉心が小さく、それらの施設におけるv
 の測定により、原子炉v異常、ガリウム異常のテストができる
 可能性がある。
- △m²>1eV² に対して原子炉∨実験から質量二乗差の情報を 得るには、炉心の拡がりの効果を避けるため、小さな炉心の 強力な出力の原子炉を使う必要がある。

Backup slides

2. Analysis of a reactor neutrino oscillation experiment with one reactor & two detectors

$$\chi^{2} = \min_{\alpha's} \left\{ \sum_{A=N,F} \sum_{i=1}^{n} \frac{1}{(t_{i}^{A} \sigma_{i}^{A})^{2}} \left[m_{i}^{A} - t_{i}^{A} (1 + \alpha + \alpha^{A} + \alpha_{i}) - \alpha_{cal}^{A} t_{i}^{A} v_{i}^{A} \right]^{2} + \sum_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{dB}} \right)^{2} + \left(\frac{\alpha_{cal}}{\sigma_{cal}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha}{\sigma_{DB}} \right)^{2} \right\}.$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{dB}} \right)^{2} + \left(\frac{\alpha^{A}}{\sigma_{cal}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha}{\sigma_{DB}} \right)^{2} \right\}.$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{dB}} \right)^{2} - \left[\frac{t_{i}^{A}}{t_{i}} + \left(\frac{t_{i}^{A}}{\sigma_{db}} \right)^{2} \right] \right]$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha^{A}}{\sigma_{DB}} \right)^{2} + \left(\frac{\alpha^{A}}{\sigma_{DB}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha}{\sigma_{DB}} \right)^{2} \right].$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha^{A}}{\tau_{A}} \right)^{2} - \left[\frac{t_{i}^{A}}{t_{i}} + \left(\frac{t_{i}^{A}}{\sigma_{db}} \right)^{2} \right] \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} \right].$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} - \left[\frac{t_{i}^{A}}{t_{i}} + \left(\frac{t_{i}^{A}}{\sigma_{db}} \right)^{2} \right] \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} \right].$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} - \left[\frac{t_{i}^{A}}{t_{i}} + \left(\frac{t_{i}^{A}}{\sigma_{db}} \right)^{2} \right] \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{Db}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} \right].$$

$$\mathbf{P}_{A=N,F} \left[\left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} - \left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} \right] + \left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} + \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} \right] + \sum_{i=1}^{n} \left(\frac{\alpha_{i}}{\sigma_{DB}} \right)^{2} + \left(\frac{\alpha_{i}}{\tau_{A}} \right)^{2} + \left(\frac{\alpha_{i}}{$$

Assumed systematic errors: those of Bugey experiment

- σ_{DB} : correlated wrt detectors, correlated wrt bins = 3%
- σ_{Db} :correlated wrt detectors, uncorrelated wrt bins = 2%
- σ_{dB} : uncorrelated wrt detectors, correlated wrt bins = 0.5%
- σ_{db} :uncorrelated wrt detectors, uncorrelated wrt bins = 0.5%
- σ_{cal} :energy calibration error for each bin = 0.6%

Formula for oscillation probability

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{14} \, \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Composition of Thermal Neutron Reactor & Fast Neutron Reactor

		²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu
Thermal Neutron Reactor (w/ H ₂ O)		53.8%	32.8%	7.8%	5.6%
Fast Neutron Reactor		37.1%	51.3%	7.3%	4.3%
	1 1	- I I	²³⁸ U –		
			²³⁵ U –		
	241Pu				
		\checkmark	Pu —		
Ž			\backslash		
	/				
1	2 3	4 5	6 7	89	
		E _v /Me	۷		26/22

The role of a "near" detecor in the energy spectrum analysis for $\Delta m^2=1eV^2$

The difference at <E> ~ 4MeV is most significant for L_N ,=17m L_F =23m

A Study of Reactor ν Monitoring at Experimental Fast Reactor JOYO

H.Furuta et al., arXiv:1108.2910v1 [hep-ex]

L=24.3m; about 150 $vp \rightarrow e^+n$ reactions/day

The measured ν event rate from reactor on-off comparison was $1.11 \pm 1.24(\text{stat.}) \pm 0.46(\text{syst.})$ events/day.

The statistical significance of the measurement was not enough.

Their motivation: to detect v from a fast reactor (not motivated by v_s)

v伝播中の物質効果 (MSW効果)

フレーバー固有状態について単位行列に比例する項は 確率振幅の位相にしか効かないので差し引いた

大気vが主として v_{μ} \Leftrightarrow v_{s} でない理由

太陽vが主として v_{μ} \Leftrightarrow v_{s} でない理由

$$[\phi(v_{e}) + \phi(v_{\mu}) + \phi(v_{\tau})]_{data} = 5.09 \times 10^{6} \text{cm}^{-2} \text{s}^{-1} \\ [\phi(v_{e}) + \phi(v_{\mu}) + \phi(v_{\tau})]_{SSM} = 5.05 \times 10^{6} \text{cm}^{-2} \text{s}^{-1}$$

For any value of $|U_{s1}|^2 + |U_{s2}|^2$, fit to sol+atm data is bad. \rightarrow excluded at 5.7 σ