

Towards a search of the neutron electric dipole moment with a high-intensity ultracold neutron source

T. Higuchi, FPUR2022, 31.05.2022

Takashi Higuchi (RCNP, Osaka Univ.) on behalf of the TUCAN collaboration

RCNP Workshop on Fundamental Physics Using Reactor 31.05.2022

Outline

Introduction: the neutron electric dipole moment (nEDM)

- Background
- Overview of nEDM experiments
- TUCAN collaboration
- UCN production
 - Principle
 - Previous achievements
 - Next generation UCN source

TUCAN overview

Recent activities

- Development of the helium cryostat for the new UCN source
- Design of magnetic shield and compensation coils
- Development of UCN spin analyzer
- Characterization of UCN transmission/storage

Background

- **CP violation:** being searched in different domains Electric Dipole Moment (EDM):
- Represented by a P- and T-violating coupling to the EM field

$$\mathcal{L}_{\rm EDM} = -\frac{i}{2} d_{\psi} \bar{\psi} \sigma_{\mu\nu} F^{\mu\nu} \gamma_5 \psi \quad \frac{\text{Non-relativistic limit}}{2}$$

Theoretical predictions:

- Standard Model: $d_n^{\text{CKM}} \sim 10^{-32} e \text{cm}$
- Orders of magnitude larger values predicted by models beyond SM \rightarrow Sensitive test of BSM models.

Complementarity with EDM searches in other systems

$$d_n^{\bar{\theta}} \sim e \frac{\theta m_*}{\Lambda_{\rm had}^2} \sim \bar{\theta} \cdot (6 \times 10^{-17}) e \ {\rm cm}$$

Strong CP problem $|d_{n,exp}| < 1.8 \times 10^{-26} ecm$ $\Rightarrow |\overline{\theta}| < 10^{-10}$

M. Pospelov & A.Ritz, Ann. Phys. **318** (2005), 119; Y. Yamaguchi & N. Yamanaka, PRL **125** (2020), 241802 T. Higuchi, FPUR2022, 31.05.2022

Experimental searches

Principle:

Interaction Hamiltonian:

$$H = -\mu_n \vec{B} \cdot \frac{\vec{S}}{S} - d_n \vec{E} \cdot \frac{\vec{S}}{S}$$

- Measure the difference of Larmor precession frequency with (\vec{E}, \vec{B}) parallel (\uparrow, \uparrow) and anti-parallel (\uparrow, \downarrow)
- The first measurement by Smith, Purcell and Ramsey (1957)
 - Used cold neutron beam polarized by a magnetized mirror
 - Employed the technique of separately oscillating fields

$$d_{n} = \frac{\hbar(\omega_{\uparrow\uparrow} - \omega_{\uparrow\downarrow})}{4|E|}$$

nEDM sensitivity:

$$\sigma(d_n) \propto \frac{\hbar}{ET\sqrt{N}}$$

T: free precession time (~1 ms) E: electric field (~70 kV/cm) N: number of neutrons (~17000 per run) (15 runs in total)

$$d_n = (-0.1 \pm 2.4) \times 10^{-20} \ ec$$

J.H. Smith, E.M. Purcell & N.F. Ramsey, Phys. Rev. 108 (1957) 120

Experimental searches (historical development)

theoretical expectation

T. Chupp et al., Rev. Mod. Phys., **91** (2019) 015001

Experimental searches (historical development)

Limitation of the cold-neutron beam method: **v** x **E** systematics \rightarrow overcome by ultracold neutrons

Neutron velocity

Cold neutrons: v=100–1000 m/s

 \Rightarrow UCN: v \leq 10 m/s

Free precession time Cold neutrons: 0.1–1.0 ms

⇒ UCN: 10–100 s

theoretical expectation

T. Higuchi, FPUR2022, 31.05.2022

J.M. Pendlebury & E. Hinds NIM A, 440 (2000), 471

T. Chupp et al., Rev. Mod. Phys., **91** (2019) 015001

Experimental searches (historical development)

Limitation of the cold-neutron beam method: **v x E** systematics \rightarrow overcome by ultracold neutrons

Neutron velocity

Cold neutrons: v=100–1000 m/s

 \Rightarrow UCN: v \leq 10 m/s

Free precession time Cold neutrons: 0.1–1.0 ms ⇒ UCN: 10–100 s

Limitation of the recent UCN measurements: statistics

The key for the next-generation:

Intense UCN source!

theoretical expectation

T. Chupp et al., Rev. Mod. Phys., **91** (2019) 015001

The TUCAN collaboration

Goals:

- 1. Build a high-intensity UCN source at TRIUMF
- 2. Measure the nEDM with 10⁻²⁷ecm precision

Expected UCN intensity/density:

- 1.4–1.6×10⁷ UCN/s production
- ~200 UCN/cm³ (polarized, filled in the EDM cell)

Recent achievements:

- UCN production scheme tested by a prototype source
- First UCN production at TRIUMF in 2017

S. Ahmed et al., PRC 99 (2019) 025503

- Currently activities:
- Development of a new upgraded UCN source

T. Higuchi, FPUR2022, 31.05.2022

TUCAN TRIUMF Ultra Cold Advanced Neutron source

Development of subsystems of the nEDM spectrometer TRIUMF W UNIVERSITY OF WINNIPEG

The TUCAN collaboration

Goals:

- 1. Build a high-intensity UCN source at TRIUMF
- 2. Measure the nEDM with 10⁻²⁷ecm precision

Expected UCN intensity/density:

- 1.4–1.6×10⁷ UCN/s production
- 200–400 UCN/cm³ (polarized, filled in the EDM cell)

$$\sigma(d_n) = \frac{\hbar}{2\alpha E T_0 \sqrt{N}}$$

a: visibility (~1)

- T: free precession time
- E: electric field
- N: number of neutrons

$$T = 130 s$$

E = 10 kV/cm

 $N = 7 \times 10^{6}$ (per cycle) (× 300 of PSI2020: 1.14×10⁴)

 $\Rightarrow \sigma(d_{n}) \sim 10^{-25} ecm$ per cycle

$\Rightarrow \sigma(d_n) \sim 10^{-27} ecm in 400 days of measurement$

(assuming 14h/day, one supercycle = 8 cycles (~ 0.3h) \leftrightarrow ~2×10⁴ supercycles)

Other requirements: - Magnetic field stability:

- 10 fT/cycle effective (with co-magnetometer)
- 10 pT/cycle inside magnetic shield

- Magnetic field homogeneity:

- 1 nT/m in the central region
- High visibility

• • •

low depolarization, high analyzing efficiency

- Efficient UCN transport

Outline

- Introduction: the neutron electric dipole moment (nEDM)
 - Background
 - Overview of nEDM experiments
 - TUCAN collaboration
- UCN production
 - Principle
 - Previous achievements
 - Next generation UCN source

TUCAN overview

Recent activities

- Development of the helium cryostat for the new UCN source
- Design of magnetic shield and compensation coils
- Development of UCN spin analyzer
- Characterization of UCN transmission/storage

TUCAN UCN production scheme

Combination of

- spallation neutron production
- super-thermal UCN production with He-II Y. Masuda et al., PRL **108** (2012) 134801
- Spallation neutrons (~MeV) produced by an accelerator beam are cooled in steps and eventually be converted to UCNs

Keys for high UCN yields :

- Keep the He-II temperature at ~1K under a heat load due to beam irradiation
- High cold neutron flux at ~1meV energy

UCN production at TRIUMF in 2017

- First UCN production at TRIUMF with a prototype UCN source
- Major results
 - Successful UCN production:
 - 2×10⁴ UCN/s (3.25×10⁵ UCN/cycle) @ 1 μA proton beam current
 - Limited by cooling power of the helium cryostat
 - Characterized the scaling of the UCN lifetime: $\tau \propto T^{-7}$

S. Ahmed et al., PRAB, **22** (2019)102401 S. Ahmed et al., PRC, **99** (2019) 025503

Design of the new UCN source

- New UCN source under development:
 Higher cooling power of the helium cryostat:
 - Higher cooling power of the He cryostat (0.4 W \rightarrow 10W)
 - Enables operation of higher beam current (1 $\mu A \rightarrow 40 \mu A$)
 - Cold neutron moderator:
 - $sD_2O \rightarrow LD_2$: increases cold neutron flux at ~ 1meV that are crucial for UCN production
 - Moderator/converter geometry optimized by MC simulation W. Schreyer et al., NIM A **959** (2020) 163525

	Prototype source	New source	UCN gain factor
Beam current	1 µA	40 µA	x40
He cryostat cooling power	0.4 W	10 W	
Cold neutron moderator	sD2O	LD2	x3
UCN production volume	8 L	27 L	x3
Operation temperature	0.9 K	1.0K	

Expected UCN yield: 1.4–1.6×10⁷ UCN/s (× 500 of the prototype)

Outline

Introduction: the neutron electric dipole moment (nEDM)

- Background
- Overview of nEDM experiments
- TUCAN collaboration
- UCN production
 - Principle
 - Previous achievements
 - Next generation UCN source

TUCAN overview

Recent activities

- Development of the helium cryostat for the new UCN source
- Design of magnetic shield and compensation coils
- Development of UCN spin analyzer
- Characterization of UCN transmission/storage

Recent developmental status

Magnetically Shielded Room

UCN spin analyzer T. Higuchi,

F.F.

Development of the helium cryostat

- Requirement:
- Keep the production volume at ~1K under 10 W of heat load
- Cryostat concept:

. S. Kawasaki et al., IOP Conf. Ser.: Mater. Sci. Eng.**755** (2020), 012140

- Heat exchanger placed downstream by 2 m to avoid radiation
- ^a He pool-boiling HEX @~0.8 K, makes use of higher SVP of ³He

³He vs. ⁴He (at 0.8 K)

- vapour pressure
- ³He: 3 Torr
- ⁴He: 0.01 Torr
- Cooling power with S=10,000m³/h - ³He: 15W
 - ^{- 4}He: 0.13 W

Cooling power:

$$Q = \frac{n}{t}L(T_{\text{liq}}) = \frac{p(T_{\text{liq}})SL(T_{\text{liq}})}{RT_{\text{pump}}}$$
$$\left(\because n = \frac{p(T_{\text{liq}})St}{RT_{\text{pump}}} \right)$$
$$n : \text{quantity (mol)}$$
$$t : \text{time}$$
$$p(T_{\text{liq}}) : \text{vapour pressure,}$$
$$S: \text{pumping speed}$$
$$L(T_{\text{liq}}) : \text{latent heat per mol}$$
$$R : \text{ideal gas constant}$$
$$T_{\text{pump}} : \text{pump temperature}$$
$$(\text{room temperature})$$

Development of the helium cryostat

Requirement:

- Keep the production volume at ~1K under 10 W of heat load
- Cryostat design: S. Kawasaki et al., IOP Conf. Ser.: Mater. Sci. Eng.**755** (2020), 012140
- Heat removed by the latent heat of He-3 evaporation

$$\dot{m} = \frac{Q}{L} = \frac{10 \text{ W}}{11.2 \text{J/g}} = 0.89 \text{ g/s} \iff$$

 $(\dot{m} \sim 8000 \text{ m}^3/\text{h} \text{ with Joule-Thomson efficiency included})$

- Fluid cooled through Joule-Thomson expansion
- HEX1: Cu HEX between He-3 and He-II
- Other HEXs to efficiently recover enthalpy of evaporating gas

Cryogenic challenges:

- Heat transfer of superfluid helium at ~1K: no measurement exists
- Heat transfer between interface of Cu-He: Kapitza conductance
- \Rightarrow Designed based on conservative estimates, Will obtain some numbers by measurement with ³He

Construction/testing of the helium cryostat at KEK

Component tests (heat exchangers, superfluid leak tests) (2019)

- Validated the thermo-fluid calculations/simulations used for the design
- Tests of the assembled cryostat (2020.08–2021.03)
 - Successful cooled down of the full system (pre-cooled to 4 K in 48 h)
 - Low static heat load: 600 mW (4K res.), 50 mW (1 K pot), 5 mW (³He pot)
 - Reached 1.23 K with pumped ⁴He (corresponds to 0.65 K ³He)
 - Characterization of boiling curves of HEX 1 prototypes

T. Okamura et al., IOP Conf. Ser.: Mater. Sci. Eng., 755 (2020) 012141

Magnetically Shielded Room (MSR)

- Requirements for the nEDM measurement:
 - Shielding factor ~ 10⁵ (@10 mHz or higher)
 - To provide ~1pT/cycle stability (1 cycle~100s)
- Fields < 1nT, gradient < 100 pT/m in the central (1 m)³ volume
- **TUCAN MSR specifications**
 - 4-layer mumetal shield
 - Size:
 - Outermost layer: (3.5 m)³
 - Innermost layer : (2.4 m)³
 - Design shielding factor (@10mHz): ~10⁵
 - Confirmed by FEA simulations
- Currently working on detailed design with the manufacturer (Magnetic Shields Limited)
- Installation planned from July 2022

21

Magnetic field characterization at TRIUMF Meson Hall

Recent magnetic field measurements on the TUCAN area in TRIUMF Meson Hall •Monitoring of ambient magnetic field on the area to estimate typical field fluctuations Three-dimensional mapping of the ambient field on the area

Results

Saturation risk of the MSR and design of the compensation system

- The background field in the area is up to $\approx 370 \ \mu T$
 - Produces in-plane B ~ 500 mT in mumetal, x2 around holes
 - Could saturate mumetal near the MSR holes (B_s of mumetal: 700 mT)
- Designing a set of coils which compensate the effects of the background field and guarantee the shielding performance of the MSR

a. MSR placed in a dipole B-field, modelling the cyclotron stray field c. Coils activated (1000 AT): IBI reduced to <150 mT T. Higuchi, FPUR2022, 31.05.2022

b. In-plane IBI of +x plane: up to 500 mT

Development of the UCN spin analyzer

- UCN spin state
- Developing iron thin foils by an ion beam sputtering facility at KURNS
- Thin (≤ 100 nm) Fe foils on Al or Si substrate
- Characterization by
 - Vibrating sample magnetometry (VSM)
 - Cold-neutron reflectometry measurement at J-PARC/MLF (July 2021)
 - UCN transmission measurement at J-PARC/MLF (March 2022)

Si-substrate Fe film (90 nm) @ 80 Oe (Sample size: 20 x 30 mm²)

Reflectivity fitted to a single-layer model convoluted with beam polarization $q_{2} = 0.25 \text{ nm}^{-1} \leftrightarrow 328 \text{ neV} \leftrightarrow 20 \text{ kG}$

Principle of UCN spin analysis: a magnetized iron foil with ~2 T provides a sufficient potential barrier to select

M. Hino et al, Nucl. Inst. Meth. A, **797** (2015), 265

Characterization of UCN transmission/storage

- Doppler-shifter pulsed UCN source at J-PARC/MLF BL05
- Decelerate very cold neutron (VCN, $\sim 50 \mu eV$) beam with a neutron super-mirror moving backward
- Provides ~40 UCN/s pulse \rightarrow velocity-resolving evaluation by ToF
- Used for component tests for the new UCN source
 - (a) transmittance measurements of UCN guides: measurement completed
 - (b) storage test of EDM cell and valve: beamtime in June 2022

Slide courtesy: Sohei Imajo

S. Imajo et al., Prog. Theor. Exp. Phys. 2016(2016), 013C02

r filling @615 kW 01 Vacuum: 0.007 Pa Fit of 0.007 Pa ---- Vacuum: 7 Pa ······ Fit of 7 Pa B₄C rubber Rotary valve Neutrons χ² / ndf 9.955 / 7 Prob 0.1911 $\textbf{29.25} \, \pm \textbf{0.7173}$ Constant 62.95 ± 1.767 Lifetime χ^2 / ndf 5.042 / 5 Prob 0.4108 Doppler shifter Constant 28.01 ± 1.928 48.54 ± 3.565 Lifetime 80 100 120 20 40 60

Summary

- The neutron EDM: sensitive probe of CP violation The TUCAN collaboration:
- The UCN production scheme demonstrated by a prototype UCN source Current status :
 - The new UCN source under construction:
 - Installation of the major components planned in 2022–2023
 - First UCN production with the new source in 2023
 - •The nEDM spectrometer developed in parallel:
 - MSR will be installed in 2022–2023, followed by the other subsystems
 - Aiming to start nEDM spectrometer commissioning in 2024
- Highlights of recent activities
 - Completion of the helium cryostat
 - On-site magnetic field characterization and design of compensation coils for the MSR
 - Development of UCN spin analyzer
 - Component tests with the Doppler-shifter pulsed UCN source at J-PARC

T. Higuchi, FPUR2022, 31.05.2022

• High intensity new UCN source \Rightarrow a breakthrough nEDM measurement with 10⁻²⁷ ecm precision

Acknowledgements

Thank you for your attention!

H. Akatsuka¹, C. Bidinosti², C. Davis³, B. Franke^{3,4}, D. Fujimoto³, M. Gericke⁵, P. Giampa⁶, R. Golub⁷, S. Hansen-Romu^{5,2}, K. Hatanaka^{8,*}, T. Higuchi⁸, G. Ichikawa⁹, S. Imajo⁸, B. Jamieson², S. Kawasaki⁹, M. Kitaguchi¹, W. Klassen^{4,5,2}, E. Klemets⁴, A. Konaka^{3,10}, E. Korkmaz¹¹, E. Korobkina⁷, F. Kuchler³, M. Lavvaf^{5,2}, T. Lindner^{3,2}, K. Madison⁴, Y. Makida⁹, J. Mammei⁵, R. Mammei^{2,3}, J. Martin^{2,*}, R. Matsumiya³, M. McCrea², E. Miller⁴, K. Mishima⁹, T. Momose⁴, T. Okamura⁹, H.J. Ong⁸, R. Picker^{3,12}, W.D. Ramsay³, W. Schreyer³, A. Sher³, H. Shimizu¹, S. Sidhu¹², S. Stargardter^{5,2}, I. Tanihata⁷, S. Vanbergen⁴, W.T.H. van Oers^{5,3}, Y. Watanabe⁹

