

RCNP研究会「研究用原子炉を用いた原子核素粒子物理学」2022年5月30-31日

発表内容

- 1.研究の背景
- 2.新試験研究炉の利用で、すべきこと
 - 中性子照射場を用いた断面積測定

①手法概要、②炉照射、③開封-測定、④断面積データ、⑤MASS分析の併用 新試験研究炉に必要な要件

- 3.新たな展開 (何ができるか)
 - 3-1 多重捕獲反応

3-2 即発ガンマ線分光法による断面積測定 ①原理、②実験、③結果
3-3 中性子スペクトルを変化させた照射場
3-4 RI試料の製造

4. まとめ

1.研究の背景 高レベル放射性廃棄物 長寿命核分裂生成核種(Fission Product) マイナーアクチノイド(Minor Actinide)

2. 新試験研究炉の利用で、すべきこと - JAEA核データ研究G

- - 核データ測定@原子炉、J-PARC
 - ⇒ 評価済みラインブラリへ反映

Japan Evaluated Nuclear Data Library(JENDL)

利用先: 原子炉の設計 放射性廃棄物の核変換の検討 廃止施設の放射化量評価 など

J-PARCと研究炉で、中性子断面積測定を実施してきている

J-PARC MLF ANNRI@BL04

JRR-3

KUR

弥生炉(廃止)

しかしながら、研究炉での測定を継続するにあたり、 JMTR(2017年)廃止、KUR (2025年5月)廃止予定 ⇒ <u>必要な照射場を失う</u> ⇒ <u>RIのデータの取得ができない!</u> (JRR-3ではRI照射不可、2サイクル以上の照射は 現状では、設備、開封場所の許可などで難しい)

中性子照射場を用いた断面積測定 ②炉照射

■照射例@KUR

中性子照射場を用いた断面積測定 ②炉照射

中性子照射場を用いた断面積測定 ③開封~測定 照射カプセル開封から計測までの工程 ホットラボ 設備の充実さ 使い勝手の良さ

炉室から冷却プールへ

セル内にカプセルを搬入

マニュピュレータにて開封

例)

インナーカプセルの切断

照射済み試料開封

ガンマ線測定(長時間)

中性子照射場を用いた断面積測定 ④断面積データ

Nuclide	Past Data (Author, Year)	JAEA Data	
⁹⁰ Sr	σ _{eff} =0.8±0.5 b (Zeisel 1966)	$\sigma_0 = 10.1 \pm 1.3 \text{m b}$ $I_0 = 104 \pm 16 \text{m b}$ (2001)	
⁹⁹ Tc	σ ₀ =20±2 b I ₀ '=186±16 b (Lucas 1977)	$\sigma_0 = 22.9 \pm 1.3 b$ $I_0 = 398 \pm 38 b$ (1995)	
¹²⁹ I	σ ₀ =27±2 b I ₀ =36±4 b (Eastwood 1958)	$\sigma_0 = 30.3 \pm 1.2 b$ $I_0 = 33.8 \pm 1.4 b$ (1996)	
¹³⁷ Cs	σ _{eff} =0.11±0.03b (Stupegia 1960)	$\sigma_0 = 0.25 \pm 0.02b$ $I_0 = 0.36 \pm 0.07b$ (1990, 1993)	
¹³⁵ Cs	σ ₀ =8.7±0.5 b I ₀ =61.7±2.3 b (Baerg 1958)	$\sigma_0 = 8.3 \pm 0.3 \text{ b}$ $I_0 = 38.1 \pm 2.6 \text{ b}$ (1997) $\sigma_0 = 8.57 \pm 0.25 \text{ b}$ $I_0 = 45.3 \pm 3.2 \text{ b}$ (2019)	
¹³⁴ Cs	σ _{eff} =134±12 b (Bayly 1958)	σ _{eff} =141±9 b (1999)	

Nuclide	Past Data (Author, Year)	JAEA Data	
²³⁷ Np	σ ₀ =158±3 b I ₀ =652±24 b (Kobayashi1994)	$\sigma_0 = 141.7 \pm 5.4 \text{ b}$ $I_0 = 862 \pm 51 \text{ b}$ (2003) $\sigma_0 = 169 \pm 6 \text{ b}$ (2006) $\sigma_0 = 186.9 \pm 6.2 \text{ b}$ $I_0 = 1009 \pm 90 \text{ b}$ (2019) $\sigma_0 = 173.8 \pm 4.7 \text{ b}$ (2022)	
²³⁸ Np	No Data	σ _{eff} =479±24 b (2004)	
²⁴¹ Am	$\sigma_{0g} = 768\pm58 \text{ b}$ $I_{0g} = 1694\pm146 \text{ b}$ (Shinohara 1997)	$\sigma_{0g} = 628 \pm 22 b$ $I_{0g} = 3.5 \pm 0.3 k b$ (2007)	
²⁴³ Am	$\sigma_{0m} = 80 \text{ b},$ $\sigma_{0g} = 4.3$ $\sigma_{0m+g} = 84.3 \text{ b}$ (Ice 1966)	$\sigma_{eff} = 174.0 \pm 5.3 \text{ b}$ (2006) $\sigma_{0g} = 4.73 \pm 0.27 \text{ b}$ $I_{0g} = 96.5 \pm 8.9 \text{ b}$ $\sigma_{0 \text{ m+g}} = 88.5 \pm 4.0 \text{ b}$ $I_{0 \text{ m+g}} = 2.30 \pm 0.20 \text{ k b}$ (2020)	

9

中性子照射場を用いた断面積測定 ⑤MASS分析の併用 - 放射化法と質量分析の併用による断面積測定

例)放射性(対象核種が測れない、入手難)

10

3. 新たな展開 3-1. 多重捕獲反応 Hf-181

OHf-181(n,g)実験可能性検討について

クリアランスの問題

二重中性子捕獲反応

・原子炉の制御には、中性子吸収の大きいHfが制御棒に使用されている。 将来、原子炉の解体、廃棄を考える場合

Hfの放射化量を精度よく予測することが必要!

3-2. 即発ガンマ線分光法による断面積測定 ①原理

中性子

〇放射化法による適用限界

中性子捕獲反応後の生成核が安定核の場合、 崩壊ガンマ線を放出しないために放射化法で は測定できない。このような対象FP核種とし

て、 107 Pd (6.5x10⁶y) 93 Zr (1.53x10⁶y)

g.s.transition

 α 内部転換係数 I,:基底遷移ガンマ線の強度 (単位:barn) H(n_{th},y)断面積 332 mbとの相対測定

3-2. 即発ガンマ線分光法による断面積測定 ③結果 Result of thermal-neutron capture cross-section for ⁹³Zr(n_{th},γ) and ⁹¹Zr(n_{th},γ) reactions

- a) Measurements with ORNL pile oscillator
- b) Statistical model estimates
- c) Calculation by the resonance parameters from BNL-325

3-3. スペクトルを変化させた照射場

3-4. RI試料の製造

Transmutability of long-lived fission products

Fission product	Decay T _{1/2} (y)	Transmutation T _{1/2} (y)*	Isotopic separation
129 [1.6x10 ⁷	51	no
¹³⁵ Cs	2.3x10 ⁶	170	yes
⁹⁹ Tc	2.1x10⁵	51	no
¹²⁶ Sn 未実施	1.0x10 ⁵	4.4x10 ³	yes
⁷⁹ Se	6.5x10 ⁴	2.2x10 ³	yes

* Thermal flux: 10¹⁴ n/cm²s

Ref. NEA2002 Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles

3-4. RI試料の製造

■Se-79の製造の検討

▪ JRR-3M(20MW) 熱:3×10¹⁴、高速:2×10¹⁴ n/cm²s

運転再開:2021年6月末

JMTRと同等の

由性子強度

- 常陽 熱:2×10^{14、}高速:3×10¹⁵ n/cm²s 冷却温度:高
- KUR (5MW) 熱:4.3×10¹³、高速:7.2×10¹² n/cm²s

- BR-2 (100MW) @ベルギー、モル研究所

- ・東北大がBR2と契約し、照射研究を実施
- ・中性子スペクトル JMTRとほぼ同じ
- ・最大で100℃、冷却水温度80℃
- •1年6サイクル (21-28日/サイクル)
- カプセルの返送 輸送費(往復)250万円
- ・Extraな照射の場合 1サイクル・カプセル 10kユーロ(約130万円)
- 照射前後の業務費 4~5kユーロ (約50-65万円)
- ・照射について、<u>技術的に問題なし</u>

3-4. RI試料の製造

• 照射済試料の運搬

• 分離操作によって発生する廃液、

廃溶媒の発生量の見積もり

- 十分な容量の廃液貯留設備
- 分離操作~廃液の処理処分
- 施設内のスムーズな移動、

ハンドリング(処理能力)

 施設間移動が柔軟に可能な施設 運営体制

まとめ

〇新試験研究炉に向けて、炉を使用した「放射化法」による断面積測定 について、測定を紹介するとともに、今後の展開する研究や必要な要件を整理した。

- 高稼働率、長期安定運転 連続運転 or サイクル照射(6サイクル/年)
- <u>RI 核燃の使用の許認可</u> スペクトルを変化させて照射できる照射場の環境
- ・炉とホットラボ施設の連結性:機能的にスムーズに連結(→研究のフットワークの良さ)
- ・施設の充実性(RI・核燃取り扱い、ホットラボ、セル、フード)、使い勝手

