6 Compositeness and weak-binding relation

6.1 Introduction

- Study of hadron structure: problem with unknown potential
 - Inter-quark potential is not accessible by confinement
 - Inter-hadron potential is not observable in a strict sense
 (Change of potential can be absorbed by change of w.f. keeping observables unchanged)
- Internal structure of hadron resonances: superposition of all possible configurations

$$|\Lambda(1405)\rangle = C_{3q}|uds\rangle + C_{5q}|uds\bar{q}q\rangle + C_{MB}|MB\rangle + \cdots$$
(44)

 C_i : weight of each component

- Traditional method : Comparison of model calculation with experimental data Calculation with $|uds\rangle$ model, calculation of $|\bar{K}N\rangle$ model, etc.
 - \rightarrow Dominant C_i is given by the model which well reproduces the experimental data
- Problems :
 - By refinements (with many parameters introduced), any model can describe data
 - Is Eq. (44) well-defined? (orthogonality of 5q and MB? structure of unstable resonance?)
 - Wave function is not an observable? energy scale?
- Weak-binding relation : Model-independent method
 - \rightarrow relate observables to internal structure
- History:
 - 1960's: Discussion to identify elementary particles out of composite particles
 - 1965: Weak-binding relation by Weinberg (bound state) [18]
 - 2003: Application to hadron physics (integration of spectral function) [36]
 - 2011: "Compositeness" in hadron physics [37]
 - 2015: Generalization of weak-binding relation to resonances [19, 20]

6.2 Weak-binding relation

• Compositeness X of stable bound state (deuteron case) [18]

$$|d\rangle = \sqrt{X}|NN\rangle + \sqrt{Z}|\text{ others }\rangle, \quad X + Z = 1$$

 $|d\rangle$: wave function of deuteron

 $|NN\rangle$: two-nucleon (s-wave) component

 $| others \rangle$: all other components Z: elementarity/elementariness

- (X,Z)=(1,0): composite like state, (X,Z)=(0,1): elementary like state
- Cautions
 - $-\mid NN \rangle$ is labeled by continuous variable such as momentum, and X is sum of all the components
 - | others \rangle contains 6q states, $N\Delta$ states, NN(d-wave) states, and so on
 - Because | others \rangle is historically introduced as a single-particle state, Z is called "elementarity"
- Weak-binding relation

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}, \quad R = \frac{1}{\sqrt{2\mu B}}$$

 $a_0: NN$ scattering length (3S_1 channel)

B: deuteron binding energy, $\mu = M_N/2$: NN reduced mass

R: deuteron radius (length scale associated with the binding energy)

 $R_{\rm typ}$: typical length scale of interaction

- When B is small (R_{typ}/R) is negligible, compositeness X is determined by observables (a_0, B)
- Condition
 - X is the compositeness in s wave scattering channel (not applicable to $\ell \neq 0$)
 - Stable bound state (no decay)
- Using B = 2.22 MeV and $a_0 = 5.42$ fm for deuteron, [38]

$$X = 1.68^{+2.15}_{-0.83}$$

Uncertainty estimated by $\mathcal{O}\left(R_{\rm typ}/R\right)$ term with $R_{\rm typ} \sim 1/m_\pi = 1.43$ fm By definition (see below) $X \leq 1 \Rightarrow 0.85 \leq X \leq 1$: more than 80 % of deuteron is NN composite

• Without using the nuclear force and deuteron w.f., structure is determined by observables

6.3 Compositeness in effective field theory

• Hamiltonian of EFT [19, 20]

$$H = H_{\text{free}} + H_{\text{int}}$$

$$H_{\text{free}} = \int d\mathbf{r} \left[\frac{1}{2M} \nabla \psi^{\dagger} \cdot \nabla \psi + \frac{1}{2m} \nabla \phi^{\dagger} \cdot \nabla \phi + \frac{1}{2M_0} \nabla B_0^{\dagger} \cdot \nabla B_0 + \omega_0 B_0^{\dagger} B_0 \right]$$

$$H_{\text{int}} = \int d\mathbf{r} \left[g_0 \left(B_0^{\dagger} \phi \psi + \psi^{\dagger} \phi^{\dagger} B_0 \right) + v_0 \psi^{\dagger} \phi^{\dagger} \phi \psi \right]$$

$$(45)$$

 $\phi(\mathbf{r}), \psi(\mathbf{r}), B_0(\mathbf{r})$: field operators, M, m, M_0 : masses, ω_0 : bare energy

Each term of free Hamiltonian H_{free} is equivalent to the kinetic term of \mathcal{L}_{eff} in §5

 g_0, v_0 : coupling constants

 H_{int} : contact interactions (Fig. 19), $\psi\phi \leftrightarrow \psi\phi$ and $\psi\phi \leftrightarrow B_0$

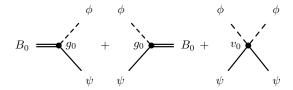


Figure 19: Feynman rules for the interaction Lagrangian (45).

• Eigenstates of H_{free}

 $H_{\text{free}}|B_0\rangle = \omega_0|B_0\rangle$ (discrete state B_0 , elementary component)

$$H_{\text{free}}|\boldsymbol{p}\rangle = \frac{\boldsymbol{p}^2}{2\mu}|\boldsymbol{p}\rangle$$
 ($\psi\phi$ scattering states with relative momentum \boldsymbol{p} , composite component)

Explicit forms and orthonormality

$$|B_{0}\rangle = \frac{1}{\sqrt{V_{p}}} \tilde{B}_{0}^{\dagger}(\mathbf{0})|0\rangle, \quad |\mathbf{p}\rangle = \frac{1}{\sqrt{V_{p}}} \tilde{\psi}^{\dagger}(\mathbf{p}) \tilde{\phi}^{\dagger}(-\mathbf{p})|0\rangle$$
$$\langle B_{0}|B_{0}\rangle = 1, \quad \langle B_{0}|\mathbf{p}\rangle = 0, \quad \langle \mathbf{p}'|\mathbf{p}\rangle = (2\pi)^{3} \delta^{3}(\mathbf{p}'-\mathbf{p})$$

 $|\hspace{.06cm}0\hspace{.02cm}\rangle$: vacuum, $V_p=(2\pi)^3\delta^3(\mathbf{0})$: phase space, $\tilde{\alpha}(\boldsymbol{p})=\mathrm{F.T.}$ $\alpha(\boldsymbol{r})$: momentum space field operators

• Complete set: from particle number conservation,

$$1 = |B_0\rangle\langle B_0| + \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}\rangle\langle \mathbf{p}|$$
(46)

Relation with Feshbach projections [39] (P + Q = 1)

$$P = \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}\rangle\langle\mathbf{p}| \quad \text{(projection to } \psi\phi \text{ scattering states)}$$
$$Q = |B_0\rangle\langle B_0| \quad \text{(projection to discrete state } B_0\text{)}$$

Field theory equivalent to the single-resonance approximation of Q channel in §4

• Bound state $|B\rangle$ with binding energy B as eigenstate of H (physical state)

$$H|B\rangle = -B|B\rangle$$

• Compositeness X (overlap with scattering states), elementarity Z (overlap with discrete state)

$$X \equiv \langle B | P | B \rangle = \int \frac{d\mathbf{p}}{(2\pi)^3} |\langle \mathbf{p} | B \rangle|^2 \ge 0$$
$$Z \equiv \langle B | Q | B \rangle = |\langle B_0 | B \rangle|^2 > 0$$

Regarding B_0 as a bare state, Z is field renormalization constant

• From the normalization of the bound state $\langle B | B \rangle = 1$ and the completeness relation (46),

$$Z + X = 1$$

By definition, X and Z are nonnegative, and sum is normalized to 1: interpreted as probabilities

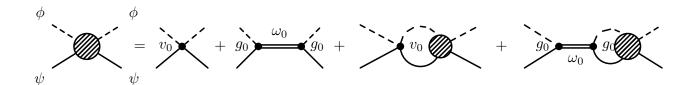


Figure 20: Feynman diagrams of the $\psi\phi$ scattering amplitude.

6.4 Weak-binding relation in effective field theory

• $\psi\phi$ scattering amplitude (derived as in §5, see Fig. 20)

$$f(E) = -\frac{\mu}{2\pi} \frac{1}{1/v(E) - G(E)} \tag{47}$$

$$v(E) = v_0 + \frac{g_0^2}{E - \omega_0},\tag{48}$$

$$G(E) = \frac{1}{2\pi^2} \int_0^{\Lambda} dp \frac{p^2}{E - p^2/(2\mu) + i0^+}$$
(49)

 \bullet Cutoff Λ : momentum scale at which hadron interaction can be regarded as pointlike

$$\Rightarrow R_{\rm typ} = \frac{1}{\Lambda}$$

• Expression of compositeness by scattering amplitude

$$X = \left. \frac{G'(E)}{G'(E) - [1/v(E)]'} \right|_{E = -B}, \quad A'(E) = \frac{dA(E)}{dE}$$

• Expanding the scattering length in terms of (R_{typ}/R)

$$a_0 = -f(E=0) = \frac{\mu}{2\pi} \left[1/v(0) - G(0) \right]^{-1}$$
(50)

$$= \dots = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right\}, \quad R = \frac{1}{\sqrt{2\mu B}}$$
 (51)

- If $\mathcal{O}(R_{\text{typ}}/R)$ is negligible, compositeness X is determined by observables (a_0, B)
- Cautions
 - -X is the compositeness in P channel
 - When multiple discrete/continuum states are included in the Q channel, the leading order term in Eq. (51) does not change and the same result holds
 - With different UV regularizations (except for dimensional regularization) in Eq. (49), the leading order term in Eq. (51) does not change and the same result holds
 - It is assumed that the coefficients of the effective range expansion does not give larger length scale than $R_{\rm typ}$ (assumption of the order of $\Delta v_{\rm inv}(0)$ in Exercise 6)

Exercise 6

1) Denoting $1/v(E) = v_{inv}(E)$ and the expansion of a function F(E) around E = -B as

$$F(E) = F(-B) + (E+B)F'(-B) + \Delta F(E), \quad \Delta F(E) = \sum_{n=2}^{\infty} \frac{1}{n!} (E+B)^n F^{(n)}(-B),$$

show that the scattering length is written as $a_0 = \mu/(2\pi)[-BG'(-B)/X + \Delta v_{inv}(0) - \Delta G(0)]^{-1}$.

2) Evaluating the integral in Eq. (49), we obtain

$$G(E) = \frac{\mu}{\pi^2} \left[-\Lambda + \sqrt{-2\mu E - i0^+} \arctan \frac{\Lambda}{\sqrt{-2\mu E - i0^+}} \right].$$

Expanding $\arctan x$ around $x = +\infty$ in this expression, show the following relations with $\Lambda = 1/R_{\rm typ}$ and $R = 1/\sqrt{2\mu B}$ (Note: Eq. (41) in Ref. [20] contains typos.):

$$-BG'(-B) = \frac{\mu}{4\pi R} \left[1 + \mathcal{O}\left(\frac{R_{\text{typ}}}{R}\right) \right], \quad -\Delta G(0) = \frac{\mu}{4\pi R} \left[1 + \mathcal{O}\left(\left(\frac{R_{\text{typ}}}{R}\right)^3\right) \right].$$

3) Assuming $R\Delta v_{\rm inv}(0)/\mu \sim \mathcal{O}((R_{\rm typ}/R)^3)$, derive the weak-binding relation (51).

6.5 Generalization to unstable states

- For the application to hadron resonances, generalization to unstable states is necessary
- Add decay channel to the EFT of previous sections (Fig. 21) Fields: ϕ_1 , ψ_1 , ϕ_2 , ψ_2 , B_0 four-point contact interactions: $\psi_1\phi_1 \leftrightarrow \psi_1\phi_1$, $\psi_1\phi_1 \leftrightarrow \psi_2\phi_2$, $\psi_2\phi_2 \leftrightarrow \psi_2\phi_2$ three-point contact interactions: $\psi_1\phi_1 \leftrightarrow B_0$, $\psi_2\phi_2 \leftrightarrow B_0$
- When threshold energy $-\nu$ of the added channel 2 $(\psi_2\phi_2)$ is lower than B, eigenenergy becomes complex, describing unstable resonance state (discussion in §4)

$$H|R\rangle = E_h|R\rangle, \quad E_h \in \mathbb{C}$$

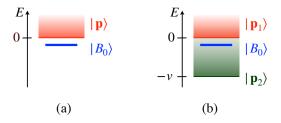


Figure 21: Spectrum of free Hamiltonian. (a): EFT in Sec. 6.3 and 6.4, (b): EFT in Sec. 6.5.

• Normalization condition of resonances ($\langle R | R \rangle$ diverges)

$$\langle \tilde{R} | R \rangle = 1$$

 $\langle \tilde{R} |$ is the left-eigenvector with the same complex eigenvalue

$$\langle \tilde{R} | H = E_h \langle \tilde{R} |$$

(Because of the non-hermiticity, left-eigenvector is not conjugate of right-eigenvector)

• Complete set

$$1 = P + Q$$

$$P = \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}_1\rangle \langle \mathbf{p}_1| \quad \text{(projection to } \psi_1 \phi_1 \text{ scattering states)}$$

$$Q = |B_0\rangle \langle B_0| + \int \frac{d\mathbf{p}}{(2\pi)^3} |\mathbf{p}_2\rangle \langle \mathbf{p}_2| \quad \text{(projection to discrete state } B_0 \text{ and } \psi_2 \phi_2 \text{ scattering states)}$$

• Compositeness X, elementarity Z

$$X = \langle \tilde{R} | P | R \rangle = \int \frac{d\mathbf{p}}{(2\pi)^3} \langle \tilde{R} | \mathbf{p}_1 \rangle \langle \mathbf{p}_1 | R \rangle \in \mathbb{C}$$

$$Z = \langle \tilde{R} | Q | R \rangle = \langle \tilde{R} | B_0 \rangle \langle B_0 | R \rangle + \int \frac{d\mathbf{p}}{(2\pi)^3} \langle \tilde{R} | \mathbf{p}_2 \rangle \langle \mathbf{p}_2 | R \rangle \in \mathbb{C}$$

- While sum of X and Z is normalized to 1, each term is **complex** and not interpreted as probabilities
- Expand the scattering length of channel 1 by (R_{typ}/R) $(R, a_0 \text{ are complex})$

$$a_0 = R \left\{ \frac{2X}{1+X} + \mathcal{O}\left(\left| \frac{R_{\text{typ}}}{R} \right| \right) + \mathcal{O}\left(\left| \frac{l}{R} \right|^3 \right) \right\}, \quad R = \frac{1}{\sqrt{-2\mu E_h}}, \quad l = \frac{1}{\sqrt{2\mu\nu}}$$
 (52)

 ν : threshold energy difference, l: corresponding length scale

- If $\mathcal{O}(R_{\mathrm{typ}}/R)$ and $\mathcal{O}(|l/R|^3)$ are negligible, compositeness X is determined by observables (a_0, B)
- Interpretation of complex X: several proposals [19, 20, 25, 40, 41], not yet established
- $\Lambda(1405)$ case:
 - channel 1 is $\bar{K}N$, channel 2 is $\pi\Sigma$
 - Eigenenergy and scattering length : $E_h = -10 26i$ MeV, $a_0 = 1.39 0.85i$ fm [42, 43]
 - For $|R| \sim 2$ fm, $R_{\rm typ} \sim 0.25$ fm (ρ meson exchange), $l \sim 1.08$ fm ($\pi \Sigma$ channel)

Neglecting the correction terms, we obtain

$$X = 1.2 + i0.1$$

X is close to $1 \Rightarrow \bar{K}N$ molecular component is dominant