
6 Compositeness and weak-binding relation

6.1 Introduction

• Study of hadron structure : problem with unknown potential

– Inter-quark potential is not accessible by confinement

– Inter-hadron potential is not observable in a strict sense

(Change of potential can be absorbed by change of w.f. keeping observables unchanged)

• Internal structure of hadron resonances : superposition of all possible configurations

|Λ(1405) 〉 = C3q|uds 〉+ C5q|udsq̄q 〉+ CMB|MB 〉+ · · · (44)

Ci : weight of each component

• Traditional method : Comparison of model calculation with experimental data

Calculation with |uds 〉 model, calculation of | K̄N 〉 model, etc.

→ Dominant Ci is given by the model which well reproduces the experimental data

• Problems :

– By refinements (with many parameters introduced), any model can describe data

– Is Eq. (44) well-defined? (orthogonality of 5q and MB? structure of unstable resonance?）
– Wave function is not an observable? energy scale?

• Weak-binding relation : Model-independent method

→ relate observables to internal structure

• History :

– 1960’s : Discussion to identify elementary particles out of composite particles

– 1965 : Weak-binding relation by Weinberg (bound state) [18]

– 2003 : Application to hadron physics (integration of spectral function) [36]

– 2011 : “Compositeness” in hadron physics [37]

– 2015 : Generalization of weak-binding relation to resonances [19, 20]

6.2 Weak-binding relation

• Compositeness X of stable bound state (deuteron case) [18]

| d 〉 =
√
X|NN 〉+

√
Z| others 〉, X + Z = 1

| d 〉 : wave function of deuteron

|NN 〉 : two-nucleon (s-wave) component

| others 〉 : all other components

Z : elementarity/elementariness
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• (X,Z) = (1, 0) : composite like state, (X,Z) = (0, 1) : elementary like state

• Cautions

– |NN 〉 is labeled by continuous variable such as momentum, andX is sum of all the components

– | others 〉 contains 6q states, N∆ states, NN(d-wave) states, and so on

– Because | others 〉 is historically introduced as a single-particle state, Z is called “elementarity”

• Weak-binding relation

a0 = R

{
2X

1 +X
+O

(
Rtyp

R

)}
, R =

1√
2µB

a0 : NN scattering length (3S1 channel)

B : deuteron binding energy, µ = MN/2 : NN reduced mass

R : deuteron radius (length scale associated with the binding energy)

Rtyp : typical length scale of interaction

• When B is small (Rtyp/R is negligible), compositeness X is determined by observables (a0, B)

• Condition

– X is the compositeness in s wave scattering channel (not applicable to ! $= 0)

– Stable bound state (no decay)

• Using B = 2.22 MeV and a0 = 5.42 fm for deuteron, [38]

X = 1.68+2.15
−0.83

Uncertainty estimated by O (Rtyp/R) term with Rtyp ∼ 1/mπ = 1.43 fm

By definition (see below) X ≤ 1⇒ 0.85 ≤ X ≤ 1 : more than 80 % of deuteron is NN composite

• Without using the nuclear force and deuteron w.f., structure is determined by observables

6.3 Compositeness in effective field theory

• Hamiltonian of EFT [19, 20]

H = Hfree +Hint

Hfree =

∫
dr

[
1

2M
∇ψ† ·∇ψ +

1

2m
∇φ† ·∇φ+

1

2M0
∇B†

0 ·∇B0 + ω0B
†
0B0

]

Hint =

∫
dr
[
g0
(
B†

0φψ + ψ†φ†B0

)
+ v0ψ

†φ†φψ
]

(45)

φ(r), ψ(r), B0(r) : field operators, M , m, M0 : masses, ω0 : bare energy

Each term of free Hamiltonian Hfree is equivalent to the kinetic term of Leff in §5
g0, v0 : coupling constants

Hint : contact interactions (Fig. 19), ψφ↔ ψφ and ψφ↔ B0
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Figure 19: Feynman rules for the interaction Lagrangian (45).

• Eigenstates of Hfree

Hfree|B0 〉 = ω0|B0 〉 (discrete state B0, elementary component)

Hfree|p 〉 =
p2

2µ
|p 〉 (ψφ scattering states with relative momentum p, composite component)

Explicit forms and orthonormality

|B0 〉 =
1√
Vp

B̃†
0(0)| 0 〉, |p 〉 = 1√

Vp
ψ̃†(p)φ̃†(−p)| 0 〉

〈B0 |B0 〉 = 1, 〈B0 |p 〉 = 0, 〈p′ |p 〉 = (2π)3δ3(p′ − p)

| 0 〉 : vacuum, Vp = (2π)3δ3(0) : phase space, α̃(p) = F.T. α(r) : momentum space field operators

• Complete set : from particle number conservation,

1 = |B0 〉〈B0 |+
∫

dp

(2π)3
|p 〉〈p | (46)

Relation with Feshbach projections [39] (P +Q = 1)

P =

∫
dp

(2π)3
|p 〉〈p | (projection to ψφ scattering states)

Q = |B0 〉〈B0 | (projection to discrete state B0)

Field theory equivalent to the single-resonance approximation of Q channel in §4

• Bound state |B 〉 with binding energy B as eigenstate of H (physical state)

H|B 〉 = −B|B 〉

• Compositeness X (overlap with scattering states), elementarity Z (overlap with discrete state)

X ≡ 〈B |P |B 〉 =
∫

dp

(2π)3
|〈p |B 〉|2 ≥ 0

Z ≡ 〈B |Q|B 〉 = |〈B0 |B 〉|2 ≥ 0

Regarding B0 as a bare state, Z is field renormalization constant

• From the normalization of the bound state 〈B |B 〉 = 1 and the completeness relation (46),

Z +X = 1

By definition, X and Z are nonnegative, and sum is normalized to 1 : interpreted as probabilities
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Figure 20: Feynman diagrams of the ψφ scattering amplitude.

6.4 Weak-binding relation in effective field theory

• ψφ scattering amplitude (derived as in §5, see Fig. 20)

f(E) = − µ

2π

1

1/v(E)−G(E)
(47)

v(E) = v0 +
g20

E − ω0
, (48)

G(E) =
1

2π2

∫ Λ

0
dp

p2

E − p2/(2µ) + i0+
(49)

• Cutoff Λ : momentum scale at which hadron interaction can be regarded as pointlike

⇒ Rtyp =
1

Λ

• Expression of compositeness by scattering amplitude

X =
G′(E)

G′(E)− [1/v(E)]′

∣∣∣∣
E=−B

, A′(E) =
dA(E)

dE

• Expanding the scattering length in terms of (Rtyp/R)

a0 = −f(E = 0) =
µ

2π
[1/v(0)−G(0)]−1 (50)

= · · · = R

{
2X

1 +X
+O

(
Rtyp

R

)}
, R =

1√
2µB

(51)

• If O(Rtyp/R) is negligible, compositeness X is determined by observables (a0, B)

• Cautions

– X is the compositeness in P channel

– When multiple discrete/continuum states are included in the Q channel, the leading order

term in Eq. (51) does not change and the same result holds

– With different UV regularizations (except for dimensional regularization) in Eq. (49), the

leading order term in Eq. (51) does not change and the same result holds

– It is assumed that the coefficients of the effective range expansion does not give larger length

scale than Rtyp (assumption of the order of ∆vinv(0) in Exercise 6)
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Exercise 6

1) Denoting 1/v(E) = vinv(E) and the expansion of a function F (E) around E = −B as

F (E) = F (−B) + (E +B)F ′(−B) +∆F (E), ∆F (E) =
∞∑

n=2

1

n!
(E +B)nF (n)(−B),

show that the scattering length is written as a0 = µ/(2π)[−BG′(−B)/X +∆vinv(0)−∆G(0)]−1.

2) Evaluating the integral in Eq. (49), we obtain

G(E) =
µ

π2

[
−Λ+

√
−2µE − i0+ arctan

Λ√
−2µE − i0+

]
.

Expanding arctanx around x = +∞ in this expression, show the following relations with Λ = 1/Rtyp

and R = 1/
√
2µB (Note : Eq. (41) in Ref. [20] contains typos.):

−BG′(−B) =
µ

4πR

[
1 +O

(
Rtyp

R

)]
, −∆G(0) =

µ

4πR

[
1 +O

((
Rtyp

R

)3
)]

.

3) Assuming R∆vinv(0)/µ ∼ O((Rtyp/R)3), derive the weak-binding relation (51).

6.5 Generalization to unstable states

• For the application to hadron resonances, generalization to unstable states is necessary

• Add decay channel to the EFT of previous sections (Fig. 21)

Fields : φ1, ψ1, φ2, ψ2, B0

four-point contact interactions : ψ1φ1 ↔ ψ1φ1, ψ1φ1 ↔ ψ2φ2, ψ2φ2 ↔ ψ2φ2

three-point contact interactions : ψ1φ1 ↔ B0, ψ2φ2 ↔ B0

• When threshold energy −ν of the added channel 2 (ψ2φ2) is lower than B, eigenenergy becomes

complex, describing unstable resonance state (discussion in §4)

H|R 〉 = Eh|R 〉, Eh ∈ C

|p⟩
|B0⟩

0
E

−v

|p1⟩

|p2⟩

|B0⟩
0
E

(a) (b)

Figure 21: Spectrum of free Hamiltonian. (a) : EFT in Sec. 6.3 and 6.4, (b) : EFT in Sec. 6.5.
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• Normalization condition of resonances (〈R |R 〉 diverges)

〈 R̃ |R 〉 = 1

〈 R̃ | is the left-eigenvector with the same complex eigenvalue

〈 R̃ |H = Eh〈 R̃ |

(Because of the non-hermiticity, left-eigenvector is not conjugate of right-eigenvector)

• Complete set

1 = P +Q

P =

∫
dp

(2π)3
|p1 〉〈p1 | (projection to ψ1φ1 scattering states)

Q = |B0 〉〈B0 |+
∫

dp

(2π)3
|p2 〉〈p2 | (projection to discrete state B0 and ψ2φ2 scattering states)

• Compositeness X, elementarity Z

X = 〈 R̃ |P |R 〉 =
∫

dp

(2π)3
〈 R̃ |p1 〉〈p1 |R 〉 ∈ C

Z = 〈 R̃ |Q|R 〉 = 〈 R̃ |B0 〉〈B0 |R 〉+
∫

dp

(2π)3
〈 R̃ |p2 〉〈p2 |R 〉 ∈ C

• While sum ofX and Z is normalized to 1, each term is complex and not interpreted as probabilities

• Expand the scattering length of channel 1 by (Rtyp/R) (R, a0 are complex)

a0 = R

{
2X

1 +X
+O

(∣∣∣∣
Rtyp

R

∣∣∣∣

)
+O

(∣∣∣∣
l

R

∣∣∣∣
3
)}

, R =
1√
−2µEh

, l =
1√
2µν

(52)

ν : threshold energy difference, l : corresponding length scale

• If O(Rtyp/R) and O(|l/R|3) are negligible, compositeness X is determined by observables (a0, B)

• Interpretation of complex X : several proposals [19, 20, 25, 40, 41], not yet established

• Λ(1405) case :

– channel 1 is K̄N , channel 2 is πΣ

– Eigenenergy and scattering length : Eh = −10− 26i MeV, a0 = 1.39− 0.85i fm [42, 43]

– For |R| ∼ 2 fm, Rtyp ∼ 0.25 fm (ρ meson exchange), l ∼ 1.08 fm (πΣ channel)

Neglecting the correction terms, we obtain

X = 1.2 + i0.1

X is close to 1 ⇒ K̄N molecular component is dominant
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