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Introduction: structure of hadrons

Exotic structure of hadrons
Various excitations of baryons

conventional exotic

&2 @ @
N
-
Tinternal multiquark  hadronic
excitation S molecule
qq pair
@ creation

Physical state: superposition of 3q, 5q, MB, ...

energy

| A(1405) ) = Nag|uds) + Nsy|uds q@) + Ngy| KN ) + - -

Is this relevant strategy?



Introduction: structure of hadrons

Ambiguity of definition of hadron structure
Decomposition of hadron “wave function”

| A(1405) ) = N3,| uds ) + Nsq| uds qq) —|—N[—(N([_(N> S

- 5q v.s. MB: double counting (orthogonality)?

(udsqg| KN ) # 0

- 3q v.s. 5q: not clearly separated in QCD
(uds | udsqq) # 0

- hadron resonances: unstable, finite decay width
| A(1405)) = ?
How can we define the hadron structure?

What is the suitable basis to classify the hadron structure?
S



Introduction: structure of hadrons

Elementary or composite in terms of hadronic d.o.f., focusing
on states near the lowest energy two-body threshold

¢ elementary O\ ¢ composite QQ\

- 6q for deuteron - NN for deuteron

- cC for X(3872) - DD* for X(3872)
\ D N 7,

- orthogonality <— completeness relation
- normalization <— wave function normalization
- model dependence <— low energy universality

* Basis must be asymptotic states (in QCD, hadrons).

* “Elementary” stands for any states other than two-body

composite (CDD pole). Compact quark states, three-body, ...
6



Compositeness of hadrons and near-threshold bound state

Coupled-channel Hamiltonian (bare state + continuum)

M, 1%
2 e o =Ew), |v)= WO
Ve o)

Elementariness by field renormalization constant
- Bound state normalization + completeness relation

(U|T) =1 1=|wo><¢or+/d3q|q><q|

- |<xp\ ('%“) 2+/d3q (0 <’2>>

O bare state ~ continuum ()
contribution contribution Q

2
=/+X

Z, X : real and nonnegative --> probabilistic interpretation



Compositeness of hadrons and near-threshold bound state

Weak binding limit

In general, Z is determined by the potential V.
1 e 1
s d%fEK 0|V]g)|? d3q| :1_21(_3)

S(E)~4 »

2/(2p)+i0F

In weak binding limit (R » Ryy), Z is related to observables.

S. Weinberg, Phys. Rev. 137, B672 (1965)
T. Hyvodo, Int. J. Mod. Phys. A 28, 1330045 (2013

2l
% 7
a : scattering length, r. : effective range
R = (2uB) 2 : radius (binding energy)
Riyp : typical length scale of the interaction

—7Z
R+ O(Riyp), Te= ER‘F O(Riyp),

Oh==

Criterion for the structure:

a.~ Dy ol S (elementary dominance), L~
a~R>r.~ Ry, (compositedominance). Z ~ O (deuteron)



Compositeness of hadrons and near-threshold bound state
Interpretation of negative effective range
For Z > O, effective range is always negative.

— —7
it Z)R+O(Rtyp)7 re:—R+O(Rtyp)7

{a ~ T (elementary dominance),

a~R>r.~ Ryyp (composite dominance).

Simple attractive potential: rc > 0
- only “composite dominance” is possible.

re < 0 : energy- (momentum-)dependence of the potential

D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

- pole term/Feshbach projection of coupled-channel effect

Negative rc —> something other than |p> : CDD pole



Compositeness of hadrons and near-threshold bound state

Compositeness theorem

Exact B -> O limit:

If the s-wave scattering amplitude has a pole exactly at the
threshold with a finite range interaction, then the field
renormalization constant vanishes.

T. Hyodo, arXiv:1407.2372 [hep-ph], to appear in Phys. Rev. C

For bare state-continuum model (c: nonzero constant)
1 1

5 e & 93 (@
( ) s c\/% « klm E(p2/2,u) - p2l—|—1)

Z(0) vanishes for go#0. If go=0, no pole in the amplitude.

Z(B)

For a local potential: poles in the effective range expansion

| g ousg )

If Z(0)=0, then both pi and p2 go to zero for B -> O

: contradict with simple pole at p=0
R.G. Newton, J. Math. Phys. 1,319 (1960) s




Compositeness of hadrons and near-threshold bound state

Interpretation of the compositeness theorem
/(B): overlap of the bound state with bare state

o 2 s
O O O

& Y,
- /(B#0)=0 —> Bound state is completely composite.

Two-body wave function at E=0: v g—o(r) /= r!

uo, E=0(7)

>
I

o= (-

Composite component is infinitely large so that the

fraction of any finite admixture of bare state is zero.
11



Near-threshold resonances

Generalization to resonances

Compositeness of bound states
1

A e >/(—B)
Naive generalization to resonances:

T. Hvodo. D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012
1

1 — X'(—Eg)
complex T complex

Z(ER) =

- interpretation?

Normalization of resonances: Gamow vector
(R|R) 500, (R|R)=1

A

1=<R\Bo><Bo\R>+/dp<érp><p|R>

complex <R|BO>Z<BOIR>7£<BO|R>*

12



Near-threshold resonances

Near-threshold resonances

Weak binding limit for bound states

- Model-independent (no potential, wavefunction, ...)

- Related to experimental observables

What about near-threshold resonances (~ small binding)?

shallow bound state: | =
model-independent

structure \ i

g % v >
v
general bound state: genera| resonance:

model-dependent Z model-dependent Z
I



Near-threshold resonances

Poles in the effective range expansion

Near-threshold phenomena: effective range expansion
T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013

with opposite sign of scattering length

1 g2 Do
fp) = (——+T—6p2—zp) l/a—> 40V
- i B
e state

- pole trajectories
with a fixed re < O

virtual . resonance
state /"W ‘

Resonance pole position <--> (a, re)
14



Near-threshold resonances

Application: /\:(2595)

Pole position of A\;(2595) in 2. scattering

- central values in PDG
15— (o ke 1T — e ey i = e T

- deduced threshold parameters of 112 scattering
R L D

- field renormalization constant: complex
Z =1 —0.608i

Large negative effective range

<— substantial elementary contribution other than 2.
(three-quark, other meson-baryon channel, or ... )

Nc(2595) is not likely a 7> molecule

15



Near-threshold mass scaling
Hadron mass scaling and threshold effect

Systematic expansion of hadron masses

- ChPT: light quark mass mq
- HQET: heavy quark mass mq »

- large Nc: number of colors Nc

What happens at two-body threshold?

mpy ()

.
.
.
.
03
.
.
*
*
*
*
*
*
*
*
’Q
.

4 )
Hadron mass scaling
. Uy A
myg (CI?), = A ) ma ) Nc
- J

resonance

energy
~

OO

16



Near-threshold mass scaling

Coupled-channel Hamiltonian (bare state + continuum)

Mo 4 = Wo
(v ; A)>|\If>m>, W)=

Equivalent single-channel scattering formulation

; 1% AR A
Ver(E) = |§0_><]\iz‘ SR e G

4n?u(p|V]%0) (%o V1P) s

f(p7p/7E):_ E_MO_Z(E) S

7 N\ P 7/
s \ \ /
.=.\\—|—//.=‘\ /’=.\\—|—---

.
Pol ition: : ; -
ole condition (6 - [ (Yo |V|a)(a|V|vo) \

——dg. 6 e
Ey, — My = X(Ep) E —¢%/(2p) + 40T N
\§ J

Question: How E, behaves against Mo around Ex=07? .



Near-threshold mass scalino

Near-threshold bound state

Bound state condition around E=0
Ey +X(0)—6M = X(Ep)

Leading contribution of the expansion:

1

E, =
T ()

Field renormalization constant

A

SM = Z(0)6M, Y'(E)=

(7)

O

2

d3(E)
dE

e

/(0) vanishes for |=0: compositeness theorem

2 o
- R =0
SM [+ 0



Near-threshold mass scaling
Near-threshold bound state (general)

General argument by Jost function (Fredholm determinant)
J.R. Taylor, Scattering Theory (Wiley, New York, 1972)

fi(p) _ (;?; )/_(;)7 (p) pole (eigenstate) = Jost function zero
Jve

Expansion of the Jost function:

1+ ag Fiyop +0@?) =0
A(p) = 2 3
14+ a4+ Bp°+0(p°) 1#0

- Yo and 3; are nonzero for a general local potential
- zero at p=0 (1+a=0) must be simple (double) for |=0 (I=0)

R.G. Newton, J. Math. Phys. 1, 319 (1960) 4 I
h

<—5M—>

Near-threshold scaling: :
0:

— oM |
(0M < 0)

SM

l+o; ~0M = Ehoc{ 120

Ji)



Near-threshold mass scalino

General threshold behavior

Near threshold scaling:

(b) [ #0

bound state | resonance ©

'6'\/' <O @ =0 Ath
Eh X
o ), 6M
-OM > 0
B ek ) ‘
Re E SM bound state virtual state ‘\‘
€ L X 2
{Im Ep oc —(6M)H1/2 [ 70 c.f. NN 1S,
Numerical calculation R
0.0000
B = -0.0001 |- i
2 Né 10.0002 |- i
(84
(q|V]wo) = gilal'OA ~lg))  *F  _|
-0.0004 1 e EI (virtual state)—
-0.010 0000 0010
SM [A%/u]

slope: Z(0)

0.006 T
(b) 1=1
0.004 - R
_ 0002} .
=
‘< 0.000 -_—
M 0002 =
=== E (bound state)
0004/ . Re E (resonance) ]|
== [m E (resonance)
-0.006
-0.010 0.000 0.010
SM [A*/u]

20



Near-threshold mass scalino

Chiral extrapolation across s-wave threshold
Scaling in wider energy region

0.10 , :

*
%y

1
1
1
1
1
1
|
‘ I
1
1
1
1
|
|
1

3‘ ’ﬂ"a
C\IS ~
£} \ .
\
-0.10 N -
Bound Virtual :Resonan:e
0.15 I ! N
-02 -01 00 0.1 0.2

SM [A°/u]
Near-threshold scaling: nonperturbative phenomenon

—> Naive ChPT does not work. Resummation is needed.

c.f.) NN sector, KN sector, ... .



Summary

Compositeness of hadrons near threshold
T. Hyodo, Int. .J. Mod. Phys. A 28, 1330045 (2013

T. Hyodo, Phys. Rev. Lett. 111, 132002 (2013)
T. Hyodo, arXiv:1407.2372 [hep-ph], to appear in Phys. Rev. C

N/ - u
s« Compositeness / elementariness

- suitable classification for hadron structure
- model independent in the weak binding limit

&« Near-threshold resonance:
- structure from effective range

& Near-threshold mass scaling:
- caution on the chiral extrapolation

S



