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Observed hadrons (2020)
Particle Data Group (PDG) 2020 eddition
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Introduction: structure of excited hadrons
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Observed hadrons (2022)
Particle Data Group (PDG) 2022 eddition

Introduction: structure of excited hadrons
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All ~ 380 hadrons emerge from single QCD Lagrangian

newly observed hadrons in 2 years!
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Unstable states via strong interaction
Stable/unstable hadrons

Introduction: structure of excited hadrons
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Aim of this talk
Introduction: structure of excited hadrons

Various excitations of hadrons

Issues:
- Quantitative discussion of internal structure
- Unstable nature of excited hadrons

quark model

En
er

gy internal 
excitation

qq q

qq q

 pair creationqq̄

multiquarks hadronic molecules

qqq qq̄
qq qB

qq̄M
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Compositeness  of stable bound stateX
S. Weinberg, Phys. Rev. 137, B672 (1965);
T. Hyodo, Int. J. Mod. Phys. A 28, 1330045 (2013)

Weak-binding relation for stable states

|d⟩ = X |NN⟩ + Z |others⟩, X + Z = 1, 0 ≤ X ≤ 1

Compositeness with weak-binding relation

a0 = R { 2X
1 + X

+ 𝒪 ( Rtyp

R )}, R =
1
2μB

radius of bound statescattering length

range of interaction

- for shallow bound state , R ≫ Rtyp X ← (a0, B)

Problem2: empirical  ?(a0, B) → X = 1.68

Problem1: applicable only to stable states

N N

d

https://inspirehep.net/literature/1256957
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Uncertainty estimation with  term𝒪(Rtyp /R)

Uncertainty and interpretation

Y. Kamiya, T. Hyodo, PTEP2017, 023D02 (2017)

Xu =
a0 /R + ξ

2 − a0 /R − ξ
, Xl =

a0 /R − ξ
2 − a0 /R + ξ

, ξ =
Rtyp

R

0

1

X

Xl

Xu

Compositeness with weak-binding relation

- exclude region outside 0 ≤ X ≤ 1

Interpretation (with finite range correction)

Rtyp = max{Rint, Reff}

T. Kinugawa, T. Hyodo, PRC 106, 015205 (2022)

TOMONA KINUGAWA AND TETSUO HYODO PHYSICAL REVIEW C 106, 015205 (2022)

FIG. 11. Comparison of the bound states with the distribution of
the magnitude of the uncertainty Ē in the effective range model in
the R̃int-r̃e plane. The legends are the same as Fig. 5.

however, keep in mind that the applicable region in Fig. 10
is the result of the specific model (the effective range model)
and the applicable boundaries are model dependent.

For the discussion of the meaningful estimation, we plot
the parameters in Table III in comparison with the magnitude
of the uncertainty Ē in R̃int-r̃e plane in Fig. 11. Because all
the states are contained in the region Ē ! 0.5, we expect that
meaningful estimations of the compositeness are possible for
these states.

C. Estimation of compositeness

We now estimate the compositeness X of the bound states
listed in Table II. We summarize the estimated uncertainties
ξeff = |re|/R and ξint = Rint/R in Table IV. Here, we set Reff =
|re| assuming that the coefficients of the higher order terms in
the effective range expansion are of natural size. We then show
the estimated compositeness with the uncertainty band with
ξeff [X (ξeff )] and ξint [X (ξint )] in Table IV. In the last column
we also show Rtyp in the improved weak-binding relation (28).

We can see that the central values of the compositeness
Xc are larger than unity except for X (3872) in Table IV.
This is because the radius R is smaller than the scattering
length a0 in these states. As we discussed in Sec. III A, Xc is
larger than unity for a0 > R. The relation between a0 and R is
also approximately determined by the sign of re. Neglecting
the O(k4) terms in the effective range expansion, we obtain

TABLE IV. The uncertainties ξeff , ξint , the estimated compos-
iteness X , and the length scale Rtyp in the improved weak-binding
relation. X (ξeff ) [X (ξint )] stands for X estimated with ξeff (ξint).

Bound state ξeff ξint X (ξeff ) X (ξint ) Rtyp

d 0.405 0.331 1.68+3.18
−0.943 1.68+2.14

−0.824 Reff

X (3872) 0.160 0.0428 0.743+0.282
−0.213 0.743+0.0675

−0.0626 Reff

D∗
s0(2317) 0.0949 0.341 1.61+0.369

−0.288 1.61+2.09
−0.804 Rint

Ds1(2460) 0.192 0.345 1.12+0.540
−0.358 1.12+1.22

−0.566 Rint

N" dibaryon 0.277 0.149 1.40+1.20
−0.600 1.40+0.523

−0.364 Reff

"" dibaryon 0.337 0.252 1.56+1.95
−0.773 1.56+1.22

−0.626 Reff
3
#H 0.157 0.295 1.35+0.532

−0.366 1.35+1.25
−0.605 Rint

4He dimer 0.0757 0.0560 1.08+0.177
−0.152 1.08+0.128

−0.114 Reff

TABLE V. The compositeness X consis-
tent with the definition (36) estimated by the
improved weak-binding relation.

Bound state Compositeness X

d 0.74 ! X ! 1
X (3872) 0.53 ! X ! 1
D∗

s0(2317) 0.81 ! X ! 1
Ds1(2460) 0.55 ! X ! 1
N" dibaryon 0.80 ! X ! 1
"" dibaryon 0.79 ! X ! 1
3
#H 0.74 ! X ! 1
4He dimer 0.93 ! X ! 1

Eq. (22):

a0 = R
1

−re/(2R) + 1
. (71)

Because R > 0, we obtain a0 > R for positive re > 0, and
a0 < R for negative re < 0 from this equation. In fact, in
Table II, these relations are satisfied except for D∗

s0(2317)
and Ds1(2460) with the small effective range. In summary,
the central value of the compositeness is larger than unity for
a0 > R, which is expected to be realized with positive re > 0
when relation (71) approximately holds.

One may wonder that the central value Xc > 1 contradicts
with the definition of the compositeness, 0 ! X ! 1. In fact,
this problem for the deuteron partly motivates the works
in Refs. [27–29]. From our viewpoint, this problem can be
avoided by considering the uncertainty ξ as in Eq. (36) as
discussed below.

Focusing on the N" dibaryon, we find that the lower limit
of the compositeness estimated by ξint is larger than unity
[Xl (ξint ) = 1.04] from Table IV. Hence, the exact value of
the compositeness of the N" dibaryon is not contained in the
uncertainty band of X (ξint ), and we cannot perform the mean-
ingful estimation of the compositeness of the N" dibaryon
with the previous weak-binding relation (Rtyp = Rint). In fact,
we have seen that the N" dibaryon exists near the boundary
of the applicable region of the previous weak-binding relation
in the effective range model as shown in Fig. 10.

In the improved weak-binding relation with Eq. (27), we
calculate compositeness with the uncertainty band as X (ξeff )
[X (ξint )] for Rtyp = Reff (Rtyp = Rint). From the last column,
we see that X (ξint ) is adopted for the states D∗

s0(2317),
Ds1(2460), and 3

#H, and X (ξeff ) for other states. By taking the
region consistent with the definition 0 ! X ! 1 in Eq. (36),
we finally determine the compositeness X as shown in
Table V.

These results (0.5 ! X ! 1) indicate that the composite
component gives the largest fraction in the wavefunction for
all states. In particular, the 4He dimer is an almost purely com-
posite state with a small fraction of the other components (!
7%). However, the compositeness of X (3872) and Ds1(2460)
can be as low as ≈0.5, which is the boundary of the composite
dominance. Therefore, it is expected that the other compo-
nents would play a substantial role in these states. We find that

015205-14

Near-threshold bound states are mostly composite

-  of deuteron is reasonableX

-  in all cases studiedX ≥ 0.5

-  of hadrons, nuclei, and atomsX

https://inspirehep.net/literature/1474407
https://inspirehep.net/literature/2083152
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Compositeness  of unstable quasibound stateX

Weak-binding relation for unstable states

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Compositeness with weak-binding relation

|Λ(1405)⟩ = X | K̄N⟩ + Z |others⟩, X + Z = 1

a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R ) + 𝒪 ( ℓ
R

3

) , R =
1

−2μEh
, ℓ ≡

1
2μν

K̄ N

π Σ

Λ(1405)
- complex a0, X

- complex eigenenergy: −B → Eh ∈ ℂ

- for near-threshold quasibound state , |R | ≫ (Rtyp, ℓ) X ← (a0, Eh)

v

- correction from threshold energy difference

Interpretation of complex X

X̃ =
1 − |Z | + |X |

2
, Z̃ =

1 − |X | + |Z |
2

, X̃ + Z̃ = 1, 0 ≤ X̃ ≤ 1

https://inspirehep.net/literature/1391312
https://inspirehep.net/literature/1474407


a0 = R
2X

1 + X
+ 𝒪 (

Rtyp

R ) + 𝒪 ( ℓ
R

3

) , R =
1

−2μEh
, ℓ ≡

1
2μν

11

Compositeness of : central values Λ(1405)

:  composite dominance <— observablesΛ(1405) K̄N

Generalized weak-binding relation

 determinations by several groups(a0, Eh)

PTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Table 2. Properties and results for the higher-energy pole of !(1405) quoted from Ref. [7]: shown are the
eigenenergy Eh, the K̄N (I = 0) scattering length a0, the K̄N compositeness XK̄N and X̃K̄N , and the uncertainty
of the interpretation U .

Eh [MeV] a0 [fm] XK̄N X̃K̄N U/2

Set 1 [35] −10 − i26 1.39 − i0.85 1.2 + i0.1 1.0 0.3
Set 2 [36] − 4 − i 8 1.81 − i0.92 0.6 + i0.1 0.6 0.0
Set 3 [37] −13 − i20 1.30 − i0.85 0.9 − i0.2 0.9 0.1
Set 4 [38] 2 − i10 1.21 − i1.47 0.6 + i0.0 0.6 0.0
Set 5 [38] − 3 − i12 1.52 − i1.85 1.0 + i0.5 0.8 0.3

the K̄N threshold energy, we can study the K̄N compositeness of !(1405) with the generalized
weak-binding relation for quasibound states. To evaluate the compositeness using the weak-binding
relation, we need the I = 0 scattering length of the K̄N channel and the eigenenergy of !(1405).
These quantities can be obtained by detailed fitting analysis of the experimental data in the K̄N
threshold energy region. The most systematic analysis in the previous studies is performed by chiral
SU(3) dynamics [34–38]. In these studies, !(1405) is described by two resonance poles of the
scattering amplitude in the complex energy plane. We consider the K̄N compositeness of the state
represented by the pole at higher energy because this can be regarded as the weakly bound state.7

In Table 2, we show the sets of the scattering length a0 and the eigenenergy of the higher pole state
Eh, based on Refs. [34–38].8 Because of the isospin symmetry breaking, the threshold energies and
the reduced masses of the K̄0n channel and the K−p channel are slightly different. We define the
scattering length for the isospin I = 0 channel as a0 = (f0,K−p(E = 0) + f0,K̄0n(E = 0))/2, where
f0,K−p and f0,K̄0n are the scattering amplitudes of K−p → K−p and K̄0n → K̄0n, respectively,
and the threshold energy E = 0 is specified below for each set. The scattering length of set 1 is
calculated from the NLO amplitude of Refs. [34,35] by using the isospin-averaged hadron masses
at the isospin-averaged K̄N threshold energy. Therefore we use the isospin-averaged mass of K̄ and
N to determine the threshold energy and the reduced mass. Set 3 is based on Fit II of Ref. [37] with
the same isospin-averaging procedure. In the other analyses, the scattering length is calculated at the
K−p threshold energy, so we use the threshold energy and reduced mass of the K−p channel. Sets 2,
4, and 5 are based on Ref. [36], solution #2 of Ref. [38], and solution #4 of Ref. [38], respectively. In
Table 2, the scattering length a0 and the eigenenergy Eh do not converge quantitatively even though
the available data is reproduced at the level of χ2/d.o.f ∼ 1 in all the analyses. We therefore employ
the results of all the analyses to estimate the systematic error.

We first estimate the magnitude of the higher-order terms in the weak-binding relation. Using the
eigenenergies in Table 2, we find that the value of R satisfies |R| ! 1.5 fm. The typical range scale
of the hadron interaction can be estimated from the meson exchange mechanism. The longest range
hadronic interaction is mediated by the lightest meson π , which cannot be exchanged between K̄ and
N because the three-point vertex of the pseudoscalar mesons is prohibited by parity conservation.
We therefore estimate the typical range scale of the K̄N interaction from the ρ meson exchange
interaction to obtain Rtyp = 1/mρ ∼ 0.25 fm.9 To estimate the length scale l = 1/

√
2µω, we use

7 We do not consider the compositeness of the state associated with the lower-energy pole, because the
weak-binding relation is derived for the closest pole to the threshold.

8 We thank Jose Antonio Oller and Maxim Mai for correspondences.
9 We do not use the σ exchange to estimate the interaction range because the σ meson has the broad width [1].
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- Neglecting correction terms:

- In all cases,  and X ∼ 1 X̃ ∼ 1
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Compositeness of : uncertaintiesΛ(1405)

 composite dominance holds even with correction termsK̄N

Estimation of correction terms: |R | ∼ 2 fm

-  meson exchange picture:  ρ Rtyp ∼ 0.25 fm

- Energy difference from :  πΣ ℓ ∼ 1.08 fmPTEP 2017, 023D02 Y. Kamiya and T. Hyodo

Fig. 9. The results of error evaluation of the compositeness X̃K̄N of !(1405). The lines denote the central
values and the shaded areas indicate the uncertainty bands.

Fig. 10. I = 0 scattering amplitudes in the K̄N → K̄N (right panel) and π# → π# (left panel) channels
based on Ref. [35] with the isospin-averaged hadron masses. The solid line denotes the real part and the dashed
line denotes the imaginary part.

the π# amplitude has a CDD pole at this energy.10 Thus the ERE description of the π# amplitude
around its threshold will not reach the K̄N threshold because of the CDD pole. The existence of
the CDD pole near the resonance pole in the π# amplitude may be an indication of the non-π#
dominance of !(1405).

In Refs. [20,21,39,40], the compositeness of !(1405) is also calculated in various models by
evaluating the expression in Eq. (89) at the pole position. The results are summarized in Table 4.
In Refs. [39] and [20], the scattering amplitude is calculated from the chiral unitary approach of
Refs. [3] and [35], respectively. In the analysis of Ref. [40], the SU(6) model in Ref. [41] is used.
In Ref. [21], the scattering amplitude based on the unitary chiral perturbation theory in Ref. [37] is
used. We summarize the results in Table 4, specifying the prescription to interpret the compositeness.
We see that these studies give a consistent result for K̄N dominance over the other components. This
is also in good agreement with our model-independent results by the weak-binding relation.

In these studies, Refs. [20] and [21] use the scattering amplitude in Refs. [35] and [37], respectively.
Although Ref. [21] uses a different prescription |X | to determine the compositeness, small U = 0.1 in
set 3 indicates the difference between the prescriptions should be small, as we discussed in Sect. 3.5.

10 In the coupled-channel scattering, each component can have a CDD pole individually. This is in contrast to
the pole of the amplitude representing the eigenstate, which is determined by det F−1 = 0 and the divergence
appears in all the components of Fij.
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Two methods to evaluate compositeness
Weak-binding relation

- Pro: model independent, determined by observables
- Con: uncertainty, near-threshold s-wave state only

Compositeness of baryon resonances

Re E

Im E

Eh

Evaluation from residue of resonance pole

X = −g2 dG(E)
dE

E=Eh

- Pro: no uncertainty, applicable to any states (e.g. p wave)
- Con: model dependent (off-shell nature)

T. Hyodo, D. Jido, A. Hosaka, PRC85, 015201 (2012);
F. Aceti. E. Oset, PRD86, 014012 (2012)

Two methods are complementary with each other

https://inspirehep.net/literature/925562
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Comparison of two methods
Compositeness of  with NLO chiral SU(3) dynamicsΛ(1405)

Compositeness of baryon resonances

Y. Ikeda, T. Hyodo, W. Weise, PLB 706, 63 (2011); NPA881, 98 (2012)

- Weak-binding relation

- Evaluation from residue of resonance pole
T. Sekihara, T. Hyodo, D. Jido, PTEP2015, 063D04 (2015)

X = 1.2 + 0.1i

X = 1.14 + 0.01i

Good agreement <—  is sufficiently close to thresholdΛ(1405)

- model dependence/uncertainty reduces as |Eh | → 0
see also T. Kinugawa, T. Hyodo, arXiv:2303.07038 [hep-ph]

Eh = − 10 − 26i [MeV]

Re E

Im E

Y. Kamiya, T. Hyodo, PRC93, 035203 (2016); PTEP2017, 023D02 (2017)

Eh

https://inspirehep.net/literature/927436
https://inspirehep.net/record/1086833
https://inspirehep.net/literature/1326946
https://inspirehep.net/literature/2641489
https://inspirehep.net/literature/1391312
https://inspirehep.net/literature/1474407
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Compositeness of baryon resonances
Unitarized NLO cihral (coupled-channel) amplitude

Compositeness of baryon resonances

T. Sekihara, T. Arai, J. Yamagata-Sekihara, S. Yasui, PRC93, 035204 (2016)

COMPOSITENESS OF BARYONIC RESONANCES: . . . PHYSICAL REVIEW C 93, 035204 (2016)

TABLE I. Fitted parameters for the πN amplitudes S11, S31,

P11, P31, P13, and P33. We also show the χ 2 value divided by the
number of degrees of freedom, χ 2/Nd.o.f..

Naive Constrained

c1 (GeV−1) −0.111 −0.047
c2 (GeV−1) 0.725 0.810
c3 (GeV−1) −1.797 −1.784
c4 (GeV−1) 0.089 0.512
gπN# 1.808 1.507
M# (MeV) 1296.0 1320.6
Ã −3.61 × 10−3 −4.82 × 10−3

χ 2/Nd.o.f. 486.3/809 1239.9/809

parameters. We mention that the low-energy constants found
in this fitting are, in general, not identical to the ones from
tree-level chiral perturbation theory, because we have fit them
to the scattering amplitude including the #(1232) resonance
region rather than fit them to the masses of baryons nor to
low-energy phenomena around the πN threshold. We also
show the P33 amplitude in the theoretical calculation and the
WI 08 solution in Fig. 2, which shows a good reproduction of
the P33 amplitude by the parameter set Naive.

2. Compositeness

Now that we have determined the scattering amplitude,
let us evaluate the πN compositeness for #(1232) and
N (940) from their pole positions and residues. In the present
formulation, the scattering amplitude has the resonance pole
in the expression

T ′±
IL(w) = g2

w − wpole
+ (regular at w = wpole), (96)

where g is the coupling constant of the resonance to the
πN state and wpole is the pole position in the complex w
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P 3
3

w  [GeV]

Real part

Imaginary partNaive
Constrained
WI 08

FIG. 2. Scattering amplitude P33 with parameter sets Naive and
Constrained fitted to the WI 08 solution [34]. Two theoretical curves
are very similar. The number of the plotted data points is 1/2 of the
total in the fits for a better visualization.

plane. We note that g and wpole contains information on the
structure of the resonance, and this is formulated in terms of
the compositeness as developed in Sec. II C,

XπN = −g2 dGL

dw
(w = wpole), (97)

which measures the amount of the two-body composite
fraction inside the resonance. In addition, we can calculate
the elementariness as well:

Z = −g2
[
G2

L

dV ′±
IL

dw

]

w=wpole

. (98)

The elementariness Z measures the contributions from missing
channels which are effectively taken into account in the πN
interaction in the practical model space, on the assumption
that the energy dependence of the interaction originates from
channels which do not appear as explicit degrees of freedom.
It is important that we have the normalization of the total wave
function as

XπN + Z = 1. (99)

However, in general, both the compositeness XπN and the
elementariness Z are complex for the resonance states, which
are difficult to interpret. Therefore, we introduce quantities
which are real, bounded in the range [0, 1], and automatically
satisfy the sum rule,

X̃πN ≡ |XπN |
1 + U

, Z̃ ≡ |Z|
1 + U

, (100)

with

U ≡ |XπN | + |Z| − 1. (101)

Obviously, we have the sum rule for X̃πN and Z̃:

X̃πN + Z̃ = 1. (102)

We can interpret X̃πN and Z̃ from the complex compositeness
and elementariness as the “probability” if and only if U is
much smaller than unity, U % 1.

Now we calculate the pole positions, coupling constants,
compositeness, and elementariness in the parameter set Naive
and list them in the second and third columns of Table II.
First, the #(1232) pole position in the parameter set Naive is
very similar to that reported by Particle Data Group: wpole =
(1210 ± 1) − (50 ± 1)i MeV [1]. The πN compositeness is

TABLE II. Properties of #(1232) and N (940). We do not
calculate U, X̃πN , and Z̃ for N (940) because it is a stable state.

Naive Constrained

#(1232) N (940) #(1232) N (940)

wpole (MeV) 1209.8 − 47.6i 938.9 1206.9 − 49.6i 938.9
g (MeV−1/2) 0.383 − 0.053i 0.560 0.395 − 0.061i 0.516
XπN 0.69 + 0.39i −0.18 0.87 + 0.35i 0.00
Z 0.31 − 0.39i 1.18 0.13 − 0.35i 1.00
U 0.30 – 0.31 –
X̃πN 0.61 – 0.71 –
Z̃ 0.39 – 0.29 –
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TABLE IV. Properties of N (1535) and N (1650).

N (1535) N (1650)

wpole (MeV) 1496.4 − 58.7i 1660.7 − 70.0i

gπN (MeV1/2) 47.1 − 7.3i 49.8 − 23.1i

gηN (MeV1/2) 68.9 − 42.4i −19.0 + 11.1i

gK# (MeV1/2) 85.0 + 14.4i −29.9 + 37.1i

gK$ (MeV1/2) −31.4 + 17.5i −73.8 + 6.0i

XπN −0.02 + 0.03i 0.00 + 0.04i

XηN 0.04 + 0.37i 0.00 + 0.01i

XK# 0.14 + 0.00i 0.08 + 0.05i

XK$ 0.01 − 0.02i 0.09 − 0.12i

Z 0.84 − 0.38i 0.84 + 0.01i

U 0.48 0.13
X̃πN 0.03 0.04
X̃ηN 0.25 0.01
X̃K# 0.09 0.08
X̃K$ 0.01 0.13
Z̃ 0.62 0.74

with

U ≡
∑

j

|Xj | + |Z| − 1. (122)

Obviously, we have the sum rule for X̃j and Z̃:
∑

j

X̃j + Z̃ = 1. (123)

We can interpret X̃j and Z̃ as the “probability” if and only if
U is much smaller than unity, U # 1.

The numerical results of the coupling constants, compos-
iteness, and elementariness are listed in Table IV both for the
N (1535) and N (1650) resonances.

For the N (1535) resonance, its coupling constants show an
ordering similar to that in Ref. [41]; in particular, |gK#| is
the largest and |gηN | comes next, which is consistent with the
result in Ref. [41]. However, the values of the compositeness in
the K# and ηN channels are not comparable to unity, and the
elementariness Z dominates the sum rule (120). Therefore, our
result implies that N (1535) has a large component originating
from contributions other than the pseudoscalar meson-baryon
dynamics considered. This conclusion was already drawn in
Ref. [22] with the simplest interaction, i.e., the Weinberg-
Tomozawa term, and we confirm this with our refined model
for the precise S11 amplitude. The result of the compositeness
means that the missing-channel contribution Z dominates the
sum rule even if we do not take into account a bare-state
contribution explicitly. The missing channel can contribute
to the appearance of the resonance through the energy
dependence of the interaction and the low-energy constants.
In other words, in the present framework, information on
the N (1535) resonance is encoded in the energy dependence
of the chiral interaction and the low-energy constants in it.
However, in the present model space, we cannot conclude
what the missing channel is; we expect that this will be
genuine one-body state, but other channels such as vector
meson-baryon and meson-meson-baryon systems could be

the origin.6 We also note that the value of U is not small
compared to unity, owing to the non-negligible imaginary
part of X̃ηN and Z̃. Therefore, modified quantities X̃j and Z̃
cannot be interpreted as probabilities to find the composite
and missing fractions, respectively. In particular, although
X̃ηN is one-fourth, we cannot conclude a non-negligible ηN
component for N (1535).

Next, for the N (1650) resonance, |gK$| is the largest
among the absolute values of the coupling constants, as in
Refs. [41]. However, the ordering of the coupling constants
is not consistent. We expect that this is mainly because the
accuracy of the fitting. Actually, our fitting can be more
accurate, as seen in the better reproduction of the N (1650) pole
position reported by Particle Data Group. As for the component
of N (1650), we can see that the elementariness Z dominates
the sum rule (120). In addition, the value of U for N (1650)
is much smaller than unity. Therefore, we can safely interpret
the modified quantities X̃j and Z̃ as probabilities. The result
listed in Table IV indicates that Z̃ is dominant and hence the
N (1650) resonance is indeed dominated by contributions other
than the pseudoscalar meson-baryon dynamics considered.

Finally, it is interesting to compare the structure of N (1535)
and N (1650) with that of #(1405) and %(1690), all of which
are considered to be dynamically generated in the chiral unitary
approach. The compositeness of #(1405) was evaluated in
the chiral unitary approach in Ref. [22] with the leading plus
next-to-leading order chiral interaction [66,67], concluding
that the higher pole of #(1405) is indeed dominated by the K̄N
composite state. In contrast to #(1405), the compositeness of
N (1535) and N (1650) is negligible or not large, although we
describe N (1535) and N (1650) in the meson-baryon degrees
of freedom, as in the #(1405) case. This difference of the
structure is expected to originate from the different thresholds
and model parameters (low-energy constants and subtraction
constants), both of which should degenerate in the SU(3) sym-
metric world. In particular, when we shift the system from the
SU(3) symmetric world to the physical one, the situation in the
S = 0 sector would change most drastically; the πN threshold
becomes the lowest one and the other channels such as
ρN, π', and genuine qqq states would contribute to the πN
scattering. In this study these are reflected to the low-energy
constants in the next-to-leading order as the missing channels.
Actually, while the chiral unitary approach can reproduce
the phenomena around the K̄N threshold for #(1405) even
with the simplest interaction, i.e., the Weinberg-Tomozawa
interaction [66,67], the πN scattering amplitude cannot be
reproduced well in the chiral unitary approach around the N∗

region only with the Weinberg-Tomozawa interaction [38].
Significant contributions in the next-to-leading order can
introduce missing channels through the low-energy constants,
and hence the compositeness (elementariness) is small (large)
for N (1535) and N (1650). Besides, we also mention the
fate of the dynamically generated resonances in S = 0 and

6If we can reproduce well the S11 amplitude with the two
bare pole terms corresponding to N (1535) and N (1650) and
energy-independent meson-baryon interaction, we can conclude that
N (1535) and N (1650) originate from one-body states, respectively.
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- :  dominance (molecule like)Δ(1232) XπN

- :  dominance (qqq like)N(1535), N(1650) Z

- :  dominance (qqq like)N(940) Z
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What to measure
Determination of (partial wave) scattering amplitude 

Compositeness of baryon resonances

- cross sections, angular dependence, …
- pole position (eigenenergy) —> weak-binding relation
- dynamical coupled-channel model —> residue method

Accumulation of data will sharpen the evaluation of X

Determination of scattering length
-  scattering length by femtoscopyΛK+

ALICE collaboration, PRC 103, 055201 (2021); PLB 845, 138145 (2023) 

ALICE Collaboration Physics Letters B 845 (2023) 138145

Besides the interaction between ! and antikaons through the 
"(1620) state, a non-resonant strong interaction is present in the 
measured correlation function, which can be explicitly seen in the 
lower panel of Fig. 1 for 100 < k∗ < 200 MeV/c. In this k∗ region 
the data, corrected by the background contribution as described 
above, go below zero indicating a depletion in the measured !–K−

pairs arising from the underlying non-resonant component of the 
interaction. Since there are no theoretical approaches available at 
the moment in which the !K− interaction is composed of a res-
onant part, through the "(1620) state above the !K− threshold, 
and a non-resonant one, an effective modeling of these two con-
tributions will be adopted employing the Lednický–Lyuboshits for-
mula. The non-resonant Cnon-res

LL (k∗) and resonant C res
LL (k∗) correla-

tions are modeled using Eq. (4): for Cnon-res
LL (k∗) an ERE scattering 

amplitude is assumed, while for C res
LL (k∗) a Sill amplitude is em-

ployed, according to Eq. (5). Taking both interactions into account, 
the final genuine correlation for !–K− is composed of a weighted 
sum of a correlation including the resonant process and another 
one responsible for the non-resonant part

Cgen(k∗) = ωCnon-res
LL (k∗) + (1 − ω)C res

LL (k∗). (6)

The remaining free parameters to be extracted in the final 
femtoscopic fit of Ctot(k∗) to the data are the weight ω for non-
resonant scattering parameters (# f0, $ f0, d0), the mass M , the 
partial widths $̃i=1,2 of the "(1620) state, and the masses and 
widths of the %, "(1690), and "(1820).

4. Results

The results for !–K+ and !–K− systems are shown in Figs. 2
and 3, respectively. The lower panels in each plot show the de-
viation between data and model in terms of number of standard 
deviations nσ . The width of the band represents the total uncer-
tainty of the fit, including the statistical and the systematic uncer-
tainties. The gray boxes correspond to the systematic uncertainties 
of the data and they maximally amount to 3%–4% in the lowest 
k∗ interval for each pair. The measured !–K+ correlation function, 
shown in Fig. 2, is below unity at low k∗ , indicating a repulsive 
strong interaction between ! and kaons, in agreement with the 
femtoscopic results obtained in Pb–Pb collisions [46]. The behav-
ior of the data is well reproduced by the fit using Eq. (2) with an 
average reduced χ2/NDF of 3.9 estimated in the default fit range.

In Fig. 3, the results for the !–K− system are presented. The 
light cyan band represents the total correlation function (Eq. (2)) 
with the genuine interaction modeled, including a non-resonant 
and a resonant contribution through the formation of the "(1620). 
The fit well describes the data and the reduced χ2/NDF, eval-
uated within the fit range, is 2.9. The obtained weight ω in 
Eq. (6) is found to be 0.950 ± 0.005(stat.)± 0.006(syst.), indicating 
that a dominant contribution from the non-resonant interaction is 
needed to reproduce the data. However, the approach taking into 
account both contributions, which is used in this work, should be 
considered as a phenomenological approach and more theoretical 
investigations are needed in order to provide a better description 
of the interplay between resonant and non-resonant processes. The 
two additional bands reported in Fig. 3 correspond to the weighted 
correlation functions obtained from the fit, which represent the 
resonant (violet) and non-resonant (olive) !K− interaction, respec-
tively.

The !–K− pairs interacting through the resonance lead to a 
rather flat correlation profile at low k∗ , which peaks at the mass of 
the observed "(1620) (k∗ ≈ 80 MeV/c) and then quickly reaches 
unity. The extracted values of mass and partial effective widths 
for the "(1620) from the femtoscopic fit are also reported in 

Fig. 2. Measured correlation function of !–K+ pairs. Statistical (bars) and system-
atic (boxes) uncertainties are shown separately. The light cyan band represents the 
total fit obtained using Eq. (2) from which the normalization ND , and the scatter-
ing parameters (# f0, $ f0, and d0) are extracted. The orange band represents the 
Cbackground(k∗) contribution, modeled as described in Section 3, and multiplied by 
the constant ND . Lower panel: nσ deviation between data and model in terms of 
numbers of standard deviations.

Fig. 3. Measured correlation function of !–K− pairs. Statistical (bars) and system-
atic (boxes) uncertainties are shown separately. The light cyan band represents the 
total fit obtained using Eq. (2) from which the normalization ND , the non-resonant 
scattering parameters (# f0, $ f0 and d0) and the properties of the "(1620) state 
are extracted. The violet band represents the C res

LL (k∗) correlation multiplied by the 
corresponding weight (1 −ω), while the olive green band is the ωCnon−res

LL (k∗). The 
orange band represents the Cbackground(k∗) modeled using the Monte Carlo simula-
tions multiplied by the constant ND . Lower panel: nσ deviation between data and 
model in terms of numbers of standard deviations.

Fig. 3. The mass M"(1620) = 1618.49 ± 0.28(stat.) ± 0.21(syst.)
MeV/c2 obtained from the fit, as stated in Sec. 3, is in agree-
ment with the Belle measurement [28]. The numerical values of 
$̃"π = 1.01 ± 0.14(stat.) ± 0.39(syst.) MeV and $̃!K− = 115.99 ±

5

aΛK+

0 = 0.61 − 0.23i [fm]
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Structure of hadrons should be studied

Compositeness is a quantitative measure of 
hadron structure, applicable to unstable states.

Compositeness of baryon resonances have 
been evaluated. More experimental data are 
welcome to improve the estimations.

Summary

Summary

- weak-binding relation (model-independent)

- in quantitative manner, and

- residue method (no uncertainty)

- with unstable nature taken into account.


